27 research outputs found

    Inhibition of CDK4/6 as a novel therapeutic option for neuroblastoma

    Get PDF
    Background: Neuroblastoma is a neural crest-derived tumor and is the most common cancer in children less than 1 year of age. We hypothesized that aberrations in genes that control the cell cycle could play an important role in the pathogenesis of neuroblastoma and could provide a tractable therapeutic target. Methods: In this study, we screened 131 genes involved in cell cycle regulation at different levels by analyzing the effect of siRNA-mediated gene silencing on the proliferation of neuroblastoma cells. Results: Marked reductions in neuroblastoma cellular proliferation were recorded after knockdown of CCND1 or PLK1. We next showed that pharmacological inhibition of cyclin D1 dependent kinases 4/6 (CDK4/6) with PD 0332991 (palbociclib) reduced the growth of neuroblastoma cell lines, induced G1 cell cycle arrest, and inhibited the cyclin D1-Rb pathway. Conclusion: Selective inhibition of CDK4/6 using palbociclib may provide a new therapeutic option for treating neuroblastoma

    Comparison of the targeting characteristics of various radioimmunoconjugates for radioimmunotherapy of neuroblastoma: Dosimetry calculations incorporating cross-organ beta doses

    No full text
    To optimize the efficacy of radioimmunotherapy (RIT), the ideal antibody-radioisotope combinations should be used to deliver the highest tumor and the lowest normal tissue doses. In a mouse model, tumor and critical organ-absorbed doses delivered by different radioimmunoconjugates were calculated and compared. We used a Medical Internal Radiation Dosimetry (MIRD)-style mouse dosimetry model that incorporates cross-organ beta doses to make refined estimates of the radiation absorbed dose to tissues. Biodistribution data from neuroblastoma xenografted nude mice were used to estimate tumor, organ and bone marrow absorbed dose values for Y-90-3F8, I-131-3F8 and I-131-F(ab')(2) fragments. Immunoreactive fractions of the radiolabeled antibodies were comparable. Although tumor uptake of the radioiodinated and radiometal labeled 3F8 was much higher than that of the radioiodinated F(ab')(2) fragments (maximum percent injected dose per gram values were 39.4, 33.2 and 20.1 for I-131-3F8, Y-90-3F8 and I-131-F(ab')(2), respectively), tumor to nontumor ratios were higher for radioiodinated fragments (with the exception of tumor to kidney ratio). For the minimum tumor dose necessary for complete ablation, the bone marrow received 195, 278 and 401 cGy for I-131-F(ab')2, I-131-3F8 and Y-90/3F8, respectively. Tumor doses were 50.1, 232 and 992 cGy/MBq for I-131-F(ab')(2), I-131-3F8 and Y-90-3F8, respectively. Tumor to bone marrow dose, which is defined as the therapeutic index, was 21.5, 14.7 and 10.4 for I-131-F(ab')(2), I-131-3F8 and Y-90-3F8. I-131-F(ab')(2) fragments produced the highest therapeutic index but also the lowest tumor dose for radioimmunotherapy. Radiometal conjugated IgG produced the highest tumor dose but also the lowest therapeutic index

    CALCULATED AND TLD-BASED ABSORBED DOSE ESTIMATES FOR I-131-LABELED 3F8 MONOCLONAL-ANTIBODY IN A HUMAN NEUROBLASTOMA XENOGRAFT NUDE-MOUSE MODEL

    No full text
    Preclinical evaluation of the therapeutic potential of radiolabeled antibodies is commonly performed in a xenografted nude mouse model. To assess therapeutic efficacy it is important to estimate the absorbed dose to the tumor and normal tissues of the nude mouse. The current study was designed to accurately measure radiation does to human neuroblastoma xenografts and normal organs in nude mice treated with I-131-labeled 3F8 monoclonal antibody (MoAb) against disialoganglioside GD(2) antigen. Absorbed dose estimates were obtained using two different approaches: (1) measurement with teflon-imbedded CaSO4:Dy mini-thermoluminescent dosimeters (TLDs) and (2) calculation using mouse S-factors. The calculated total dose to tumor one week after i.v. injection of the 50 mu Ci I-131-3F8 MoAb was 604 cGy. The corresponding decay corrected and not corrected TLD measurements were 109 +/- 9 and 48.7 +/- 3.4 cGy respectively. The calculated to TLD-derived dose ratios for tumor ranged from 6.1 at 24 h to 5.5 at I week. The light output fading rate was found to depend upon the tissue type within which the TLDs were implanted. The decay rate in tumor, muscle, subcutaneous tissue and in vitro, were 9.5, 5.0, 3.7 and 0.67% per day, respectively. We have demonstrated that the type of tissue in which the TLD was implanted strongly influenced the in vine decay of light output. Even with decay correction, a significant discrepancy was observed between MIRD-based calculated and CaSO4:Dy mini-TLD measured absorbed doses. Batch dependence, pH of the tumor or other variables associated with TLDs which are not as yet well known may account for this discrepancy
    corecore