81 research outputs found
Benthic and Hyporheic Macroinvertebrate Distribution Within the Heads and Tails of Riffles During Baseflow Conditions
The distribution of lotic fauna is widely acknowledged to be patchy reflecting the interaction between biotic and abiotic factors. In an in-situ field study, the distribution of benthic and hyporheic invertebrates in the heads (downwelling) and tails (upwelling) of riffles were examined during stable baseflow conditions. Riffle heads were found to contain a greater proportion of interstitial fine sediment than riffle tails. Significant differences in the composition of benthic communities were associated with the amount of fine sediment. Riffle tail habitats supported a greater abundance and diversity of invertebrates sensitive to fine sediment such as EPT taxa. Shredder feeding taxa were more abundant in riffle heads suggesting greater availability of organic matter. In contrast, no significant differences in the hyporheic community were recorded between riffle heads and tails. We hypothesise that clogging of hyporheic interstices with fine sediments may have resulted in the homogenization of the invertebrate community by limiting faunal movement into the hyporheic zone at both the riffle head and tail. The results suggest that vertical hydrological exchange significantly influences the distribution of fine sediment and macroinvertebrate communities at the riffle scale
Origin and ascent history of unusually crystal-rich alkaline basaltic magmas from the western Pannonian Basin
The last eruptions of the monogenetic Bakony-Balaton Highland Volcanic Field
(western Pannonian Basin, Hungary) produced unusually crystal- and xenolith-rich
alkaline basalts which are unique among the alkaline basalts of the Carpathian-
Pannonian Region. Similar alkaline basalts are only rarely known in other volcanic
fields of the world. These special basaltic magmas fed the eruptions of two closely
located volcanic centres: the Bondoró-hegy and the Füzes-tó scoria cone. Their
uncommon enrichment in diverse crystals produced unique rock textures and modified
original magma compositions (13.1-14.2 wt.% MgO, 459-657 ppm Cr, 455-564 ppm Ni
contents).
Detailed mineral-scale textural and chemical analyses revealed that the Bondoró-hegy
and Füzes-tó alkaline basaltic magmas have a complex ascent history, and that most
of their minerals (~30 vol.% of the rocks) represent foreign crystals derived from
different levels of the underlying lithosphere. The most abundant xenocrysts, olivine,
orthopyroxene, clinopyroxene and spinel, were incorporated from different regions and
rock types of the subcontinental lithospheric mantle. Megacrysts of clinopyroxene and
spinel could have originated from pegmatitic veins / sills which probably represent
magmas crystallized near the crust-mantle boundary. Green clinopyroxene xenocrysts
could have been derived from lower crustal mafic granulites. Minerals that crystallized
in situ from the alkaline basaltic melts (olivine with Cr-spinel inclusions, clinopyroxene,
plagioclase, Fe-Ti oxides) are only represented by microphenocrysts and overgrowths
on the foreign crystals. The vast amount of peridotitic (most common) and mafic
granulitic materials indicates a highly effective interaction between the ascending
magmas and wall rocks at lithospheric mantle and lower crustal levels. However,
fragments from the middle and upper crust are absent from the studied basalts,
suggesting a change in the style (and possibly rate) of magma ascent in the crust.
These xenocryst- and xenolith-rich basalts yield divers tools for estimating magma
ascent rate that is important for hazard forecasting in monogenetic volcanic fields.
According to the estimated ascent rates, the Bondoró-hegy and Füzes-tó alkaline
basaltic magmas could have reached the surface within hours to few days, similarly to
the estimates for other eruptive centres in the Pannonian Basin which were fed by
"normal" (crystal- and xenolith-poor) alkaline basalts
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Elucidating mechanisms of genetic cross-disease associations at the PROCR vascular disease locus
Many individual genetic risk loci have been associated with multiple common human diseases. However, the molecular basis of this pleiotropy often remains unclear. We present an integrative approach to reveal the molecular mechanism underlying the PROCR locus, associated with lower coronary artery disease (CAD) risk but higher venous thromboembolism (VTE) risk. We identify PROCR-p.Ser219Gly as the likely causal variant at the locus and protein C as a causal factor. Using genetic analyses, human recall-by-genotype and in vitro experimentation, we demonstrate that PROCR-219Gly increases plasma levels of (activated) protein C through endothelial protein C receptor (EPCR) ectodomain shedding in endothelial cells, attenuating leukocyte– endothelial cell adhesion and vascular inflammation. We also associate PROCR-219Gly with an increased pro- thrombotic state via coagulation factor VII, a ligand of EPCR. Our study, which links PROCR-219Gly to CAD through anti-inflammatory mechanisms and to VTE through pro-thrombotic mechanisms, provides a framework to reveal the mechanisms underlying similar cross-phenotype associations
Discovery That Theonellasterol a Marine Sponge Sterol Is a Highly Selective FXR Antagonist That Protects against Liver Injury in Cholestasis
Background: The farnesoid-x-receptor (FXR) is a bile acid sensor expressed in the liver and gastrointestinal tract. Despite
FXR ligands are under investigation for treatment of cholestasis, a biochemical condition occurring in a number of liver
diseases for which available therapies are poorly effective, mice harboring a disrupted FXR are protected against liver injury
caused by bile acid overload in rodent models of cholestasis. Theonellasterol is a 4-methylene-24-ethylsteroid isolated from
the marine sponge Theonella swinhoei. Here, we have characterized the activity of this theonellasterol on FXR-regulated
genes and biological functions.
Principal Findings: Interrogation of HepG2 cells, a human hepatocyte cell line, by microarray analysis and transactivation
assay shows that theonellasterol is a selective FXR antagonist, devoid of any agonistic or antagonistic activity on a number of
human nuclear receptors including the vitamin D receptor, PPARs, PXR, LXRs, progesterone, estrogen, glucorticoid and
thyroid receptors, among others. Exposure of HepG2 cells to theonellasterol antagonizes the effect of natural and synthetic
FXR agonists on FXR-regulated genes, including SHP, OSTa, BSEP and MRP4. A proof-of-concept study carried out to
investigate whether FXR antagonism rescues mice from liver injury caused by the ligation of the common bile duct, a model
of obstructive cholestasis, demonstrated that theonellasterol attenuates injury caused by bile duct ligation as measured by
assessing serum alanine aminostrasferase levels and extent of liver necrosis at histopathology. Analysis of genes involved in
bile acid uptake and excretion by hepatocytes revealed that theonellasterol increases the liver expression of MRP4, a
basolateral transporter that is negatively regulated by FXR. Administering bile duct ligated mice with an FXR agonist failed
to rescue from liver injury and downregulated the expression of MRP4.
Conclusions: FXR antagonism in vivo results in a positive modulation of MRP4 expression in the liver and is a feasible
strategy to target obstructive cholestasis
The Enigma of Soil Animal Species Diversity Revisited: The Role of Small-Scale Heterogeneity
Peer reviewedPublisher PD
Intradermal Electroporation of Naked Replicon RNA Elicits Strong Immune Responses
RNA-based vaccines represent an interesting immunization modality, but suffer from poor stability and a lack of efficient and clinically feasible delivery technologies. This study evaluates the immunogenic potential of naked in vitro transcribed Semliki Forest virus replicon RNA (RREP) delivered intradermally in combination with electroporation. Replicon-immunized mice showed a strong cellular and humoral response, contrary to mice immunized with regular mRNA. RREP-elicited induction of interferon-γ secreting CD8+ T cells and antibody responses were significantly increased by electroporation. CD8+ T cell responses remained substantial five weeks post vaccination, and antigen-specific CD8+ T cells with phenotypic characteristics of both effector and central memory cells were identified. The immune response during the contraction phase was further increased by a booster immunization, and the proportion of effector memory cells increased significantly. These results demonstrate that naked RREP delivered via intradermal electroporation constitute an immunogenic, safe and attractive alternative immunization strategy to DNA-based vaccines
Microviridae Goes Temperate: Microvirus-Related Proviruses Reside in the Genomes of Bacteroidetes
The Microviridae comprises icosahedral lytic viruses with circular single-stranded DNA genomes. The family is divided into two distinct groups based on genome characteristics and virion structure. Viruses infecting enterobacteria belong to the genus Microvirus, whereas those infecting obligate parasitic bacteria, such as Chlamydia, Spiroplasma and Bdellovibrio, are classified into a subfamily, the Gokushovirinae. Recent metagenomic studies suggest that members of the Microviridae might also play an important role in marine environments. In this study we present the identification and characterization of Microviridae-related prophages integrated in the genomes of species of the Bacteroidetes, a phylum not previously known to be associated with microviruses. Searches against metagenomic databases revealed the presence of highly similar sequences in the human gut. This is the first report indicating that viruses of the Microviridae lysogenize their hosts. Absence of associated integrase-coding genes and apparent recombination with dif-like sequences suggests that Bacteroidetes-associated microviruses are likely to rely on the cellular chromosome dimer resolution machinery. Phylogenetic analysis of the putative major capsid proteins places the identified proviruses into a group separate from the previously characterized microviruses and gokushoviruses, suggesting that the genetic diversity and host range of bacteriophages in the family Microviridae is wider than currently appreciated
Consumption of pasteurized human lysozyme transgenic goats’ milk alters serum metabolite profile in young pigs
Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats’ milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats’ milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health
- …
