692 research outputs found

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Astrocytes display cell autonomous and diverse early reactive states in familial amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis is a rapidly progressive and fatal disease. Although astrocytes are increasingly recognized contributors to the underlying pathogenesis, the cellular autonomy and uniformity of astrocyte reactive transformation in different genetic forms of amyotrophic lateral sclerosis remain unresolved. Here we systematically examine these issues by using highly enriched and human induced pluripotent stem cell-derived astrocytes from patients with VCP and SOD1 mutations. We show that VCP mutant astrocytes undergo cell-autonomous reactive transformation characterized by increased expression of complement component 3 (C3) in addition to several characteristic gene expression changes. We then demonstrate that isochronic SOD1 mutant astrocytes also undergo a cell-autonomous reactive transformation, but that this is molecularly distinct from VCP mutant astrocytes. This is shown through transcriptome-wide analyses, identifying divergent gene expression profiles and activation of different key transcription factors in SOD1 and VCP mutant human induced pluripotent stem cell-derived astrocytes. Finally, we show functional differences in the basal cytokine secretome between VCP and SOD1 mutant human induced pluripotent stem cell-derived astrocytes. Our data therefore reveal that reactive transformation can occur cell autonomously in human amyotrophic lateral sclerosis astrocytes and with a striking degree of early molecular and functional heterogeneity when comparing different disease-causing mutations. These insights may be important when considering astrocyte reactivity as a putative therapeutic target in familial amyotrophic lateral sclerosis

    Proposal, project, practice, pause: developing a framework for evaluating smart domestic product engagement

    Get PDF
    Smart homes are fast becoming a reality, with smart TVs, smart meters and other such “smart” devices/systems already representing a substantial household presence. These, which we collectively term “smart domestic products” (SDPs), will need to be promoted, adopted, and normalized into daily routines. Despite this, the marketing canon lacks a substantive discourse on pertinent research. We look to help correct this by melding ideas from organizational sociology, innovation diffusion and appropriation studies, and service dominant logic. Consequently, we suggest a framework for research that responds directly to the specific characteristics of SDPs. Using the SDP eco-system as a context, our framework emphasizes the interplay of embeddedness, practice, value and engagement. It comprises a four-stage horizontal/ longitudinal axis we describe as proposal, project, practice and pause. Cross-sectionally we focus on value, and combine aspects of existing thought to suggest how this impacts each stage of our engagement continuum. We subsequently identify perceived personal advantage as the resultant of these two axes and propose this as the key for understanding consumer and SDP sociomaterial engagement. This article also advances a definition of SDPs and ends with an agenda for further research

    Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury

    Get PDF
    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis

    Real-time PCR assay and rapid diagnostic tests for the diagnosis of clinically suspected malaria patients in Bangladesh

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More than 95% of total malaria cases in Bangladesh are reported from the 13 high endemic districts. <it>Plasmodium falciparum </it>and <it>Plasmodium vivax </it>are the two most abundant malaria parasites in the country. To improve the detection and management of malaria patients, the National Malaria Control Programme (NMCP) has been using rapid diagnostic test (RDT) in the endemic areas. A study was conducted to establish a SYBR Green-based modified real-time PCR assay as a gold standard to evaluate the performance of four commercially-available malaria RDTs, along with the classical gold standard- microscopy.</p> <p>Methods</p> <p>Blood samples were collected from 338 febrile patients referred for the diagnosis of malaria by the attending physician at Matiranga</p> <p>Upazila Health Complex (UHC) from May 2009 to August 2010. Paracheck RDT and microscopy were performed at the UHC. The blood samples were preserved in EDTA tubes. A SYBR Green-based real-time PCR assay was performed and evaluated. The performances of the remaining three RDTs (Falcivax, Onsite Pf and Onsite Pf/Pv) were also evaluated against microscopy and real-time PCR using the stored blood samples.</p> <p>Result</p> <p>In total, 338 febrile patients were enrolled in the study. Malaria parasites were detected in 189 (55.9%) and 188 (55.6%) patients by microscopy and real-time PCR respectively. Among the RDTs, the highest sensitivity for the detection of <it>P. falciparum </it>(including mixed infection) was obtained by Paracheck [98.8%, 95% confidence interval (CI) 95.8-99.9] and Falcivax (97.6%, 95% CI 94.1-99.4) compared to microscopy and real-time PCR respectively. Paracheck and Onsite Pf/Pv gave the highest specificity (98.8%, 95% CI 95.7-99.9) compared to microscopy and Onsite Pf/Pv (98.8, 95% CI 95.8-99.9) compared to real-time PCR respectively for the detection of <it>P. falciparum</it>. On the other hand Falcivax and Onsite Pf/Pv had equal sensitivity (90.5%, 95% CI 69.6-98.8) and almost 100% specificity compared to microscopy for the detection of <it>P. vivax</it>. However, compared to real-time PCR assay RDTs and microscopy gave low sensitivity (76.9%, 95% CI 56.4-91) in detecting of <it>P. vivax </it>although a very high specificity was obtained (99- 100%).</p> <p>Conclusion</p> <p>The results of this study suggest that the SYBR Green-based real-time PCR assay could be used as an alternative gold standard method in a reference setting. Commercially-available RDTs used in the study are quite sensitive and specific in detecting <it>P. falciparum</it>, although their sensitivity in detecting <it>P. vivax </it>was not satisfactory compared to the real-time PCR assay.</p

    Integrative miRNA-mRNA Profiling of Adipose Tissue Unravels Transcriptional Circuits Induced by Sleep Fragmentation

    Get PDF
    Obstructive sleep apnea (OSA) is a prevalent condition and strongly associated with metabolic disorders. Sleep fragmentation (SF) is a major consequence of OSA, but its contribution to OSA-related morbidities is not known. We hypothesized that SF causes specific perturbations in transcriptional networks of visceral fat cells, leading to systemic metabolic disturbances. We simultaneously profiled visceral adipose tissue mRNA and miRNA expression in mice exposed to 6 hours of SF during sleep, and developed a new computational framework based on gene set enrichment and network analyses to merge these data. This approach leverages known gene product interactions and biologic pathways to interrogate large-scale gene expression profiling data. We found that SF induced the activation of several distinct pathways, including those involved in insulin regulation and diabetes. Our integrative methodology identified putative controllers and regulators of the metabolic response during SF. We functionally validated our findings by demonstrating altered glucose and lipid homeostasis in sleep-fragmented mice. This is the first study to link sleep fragmentation with widespread disruptions in visceral adipose tissue transcriptome, and presents a generalizable approach to integrate mRNA-miRNA information for systematic mapping of regulatory networks

    Molecular characterization and human health risk assessment of multi-drug and heavy metals tolerant bacteria from urban river water

    Full text link
    The present study characterized the multi-drug and heavy metal-resistant bacteria and their human health risks in the six major urban rivers. The bacterial strains were identified by molecular techniques based on 16 s rDNA gene sequence analysis, where most of the isolates belong to Bacillus spp. and Staphylococcus spp. The minimum inhibitory concentration (MIC) of the bacterial strains to different heavy metals like chromium, lead, cadmium, cobalt, mercury, and nickel ranged up to 3000 mg/L. The antibiotic susceptibility tests revealed that 69.23% of the strains resistant to ceftriaxone, while 61.54% were resilient to cefotaxime, 53.85% to ampicillin, 46.15% to amoxicillin, 30.77% to streptomycin, 15.38% to azithromycin, 15.38% to chloramphenicol, 7.69% to tetracycline, 7.69% to gentamycin, 7.69% to vancomycin. Interestingly, ciprofloxacin was found highly sensitive to all the bacterial strains in the present study. The multiple heavy metals resistance (MHMR) index of all the bacterial strains in the present study was very high compared to the standard value of 0.50. The multiple antibiotics resistance (MAR) index was highest for Bacillus cereus MKSMPbT1 (0.45), while it was lowest in B. xiamenesis MKSMCrB1 and B. pumilus MKSMNiT1 (0.09). The results of the hemolytic assay revealed that almost all the bacterial strains identified in the present study are highly pathogenic in nature. In essence, the bacterial strains identified in the present study could pose significant environmental and public health concerns that draw strict government attention

    A community-based cluster randomised controlled trial in rural Bangladesh to evaluate the impact of the use of iron-folic acid supplements early in pregnancy on the risk of neonatal mortality: The Shonjibon trial

    Get PDF
    Abstract Background Iron-deficiency is the most common nutritional deficiency globally. Due to the high iron requirements for pregnancy, it is highly prevalent and severe in pregnant women. There is strong evidence that maternal iron deficiency anaemia increases the risk of adverse perinatal outcomes. However, most of the evidence is from observational epidemiological studies except for a very few randomised controlled trials. IFA supplements have also been found to reduce the preterm delivery rate and neonatal mortality attributable to prematurity and birth asphyxia. These results combined indicate that IFA supplements in populations of iron-deficient pregnant women could lead to a decrease in the number of neonatal deaths mediated by reduced rates of preterm delivery. In this paper, we describe the protocol of a community-based cluster randomised controlled trial that aims to evaluate the impact of maternal antenatal IFA supplements on perinatal outcomes. Methods/design The effect of the early use of iron-folic acid supplements on neonatal mortality will be examined using a community based, cluster randomised controlled trial in five districts with 30,000 live births. In intervention clusters trained BRAC village volunteers will identify pregnant women & provide iron-folic acid supplements. Groundwater iron levels will be measured in all study households using a validated test kit. The analysis will follow the intention to treat principle. We will compare neonatal mortality rates & their 95% confidence intervals adjusted for clustering between treatment groups in each groundwater iron-level group. Cox proportional hazards mixed models will be used for mortality outcomes & will include groundwater iron level as an interaction term in the mortality model. Discussion This paper aims to describe the study protocol of a community based randomised controlled trial evaluating the impact of the use of iron-folic acid supplements early in pregnancy on the risk of neonatal mortality. This study is critical because it will determine if antenatal IFA supplements commenced in the first trimester of pregnancy, rather than later, will significantly reduce neonatal deaths in the first month of life, and if this approach is cost-effective. Trial registration This trial has been registered with the Australian New Zealand Clinical Trials Registry (ANZCTR) on 31 May 2012. The registration ID is ACTRN12612000588897
    corecore