1,185 research outputs found
Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure
Ultrafast electron thermalization - the process leading to Auger
recombination, carrier multiplication via impact ionization and hot carrier
luminescence - occurs when optically excited electrons in a material undergo
rapid electron-electron scattering to redistribute excess energy and reach
electronic thermal equilibrium. Due to extremely short time and length scales,
the measurement and manipulation of electron thermalization in nanoscale
devices remains challenging even with the most advanced ultrafast laser
techniques. Here, we overcome this challenge by leveraging the atomic thinness
of two-dimensional van der Waals (vdW) materials in order to introduce a highly
tunable electron transfer pathway that directly competes with electron
thermalization. We realize this scheme in a graphene-boron nitride-graphene
(G-BN-G) vdW heterostructure, through which optically excited carriers are
transported from one graphene layer to the other. By applying an interlayer
bias voltage or varying the excitation photon energy, interlayer carrier
transport can be controlled to occur faster or slower than the intralayer
scattering events, thus effectively tuning the electron thermalization pathways
in graphene. Our findings, which demonstrate a novel means to probe and
directly modulate electron energy transport in nanoscale materials, represent
an important step toward designing and implementing novel optoelectronic and
energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic
Beyond Gross-Pitaevskii Mean Field Theory
A large number of effects related to the phenomenon of Bose-Einstein
Condensation (BEC) can be understood in terms of lowest order mean field
theory, whereby the entire system is assumed to be condensed, with thermal and
quantum fluctuations completely ignored. Such a treatment leads to the
Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although
this theory works remarkably well for a broad range of experimental parameters,
a more complete treatment is required for understanding various experiments,
including experiments with solitons and vortices. Such treatments should
include the dynamical coupling of the condensate to the thermal cloud, the
effect of dimensionality, the role of quantum fluctuations, and should also
describe the critical regime, including the process of condensate formation.
The aim of this Chapter is to give a brief but insightful overview of various
recent theories, which extend beyond the GPE. To keep the discussion brief,
only the main notions and conclusions will be presented. This Chapter
generalizes the presentation of Chapter 1, by explicitly maintaining
fluctuations around the condensate order parameter. While the theoretical
arguments outlined here are generic, the emphasis is on approaches suitable for
describing single weakly-interacting atomic Bose gases in harmonic traps.
Interesting effects arising when condensates are trapped in double-well
potentials and optical lattices, as well as the cases of spinor condensates,
and atomic-molecular coupling, along with the modified or alternative theories
needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by
P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer
Verlag
Can We Really Prevent Suicide?
Every year, suicide is among the top 20 leading causes of death globally for all ages. Unfortunately, suicide is difficult to prevent, in large part because the prevalence of risk factors is high among the general population. In this review, clinical and psychological risk factors are examined and methods for suicide prevention are discussed. Prevention strategies found to be effective in suicide prevention
include means restriction, responsible media coverage, and general public education, as well identification methods such as screening, gatekeeper training, and primary care physician education. Although the treatment for preventing suicide is difficult, follow-up that includes pharmacotherapy, psychotherapy, or both may be useful. However, prevention methods cannot be restricted to the individual. Community, social, and policy interventions will also be essentia
Seasonal variation in objectively measured physical activity, sedentary time, cardio-respiratory fitness and sleep duration among 8–11 year-old Danish children: a repeated-measures study
Abstract
Background
Understanding fluctuations in lifestyle indicators is important to identify relevant time periods to intervene in order to promote a healthy lifestyle; however, objective assessment of multiple lifestyle indicators has never been done using a repeated-measures design. The primary aim was, therefore, to examine between-season and within-week variation in physical activity, sedentary behaviour, cardio-respiratory fitness and sleep duration among 8–11 year-old children.
Methods
A total of 1021 children from nine Danish schools were invited to participate and 834 accepted. Due to missing data, 730 children were included in the current analytical sample. An accelerometer was worn for 7 days and 8 nights during autumn, winter and spring, from which physical activity, sedentary time and sleep duration were measured. Cardio-respiratory fitness was assessed using a 10-min intermittent running test.
Results
The children had 5% more sedentary time, 23% less time in moderate-to-vigorous physical activity and 2% longer sleep duration during winter compared to spring and cardio-respiratory fitness was 4% higher during spring compared to autumn (P < 0.001). Sedentary time was higher and total physical activity, moderate-to-vigorous physical activity and sleep duration (boys only) were lower during weekends at all seasons (P ≤ 0.01). Intraclass correlation coefficients between seasons ranged from 0.47-0.74, leaving 45-78% to seasonal variation.
Conclusions
Overall, sedentary time was higher and physical activity lower during winter and during weekends. The most accurate and unbiased estimates of physical activity came from autumn; however, the considerable intra-individual variation suggests that a single measurement may not adequately characterise children’s habitual sleep and activity
PARP14 promotes the warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation
Most tumour cells use aerobic glycolysis (the Warburg effect) to support anabolic growth and evade apoptosis. Intriguingly, the molecular mechanisms that link the Warburg effect with the suppression of apoptosis are not well understood. In this study, using loss-of-function studies in vitro and in vivo, we show that the anti-apoptotic protein poly(ADP-ribose) polymerase (PARP)14 promotes aerobic glycolysis in human hepatocellular carcinoma (HCC) by maintaining low activity of the pyruvate kinase M2 isoform (PKM2), a key regulator of the Warburg effect. Notably, PARP14 is highly expressed in HCC primary tumours and associated with poor patient prognosis. Mechanistically, PARP14 inhibits the pro-apoptotic kinase JNK1, which results in the activation of PKM2 through phosphorylation of Thr365. Moreover, targeting PARP14 enhances the sensitization of HCC cells to anti-HCC agents. Our findings indicate that the PARP14-JNK1-PKM2 regulatory axis is an important determinant for the Warburg effect in tumour cells and provide a mechanistic link between apoptosis and metabolism
The Use of Platelet-Rich Plasma (PRP) for the Management of Non-union Fractures.
PURPOSE OF REVIEW: The treatment of non-union fractures represents a significant challenge for orthopaedic surgeons. In recent years, biologic agents have been investigated and utilised to support and improve bone healing. Among these agents, platelet-rich plasma (PRP) is an emerging strategy that is gaining popularity. The aim of this review is to evaluate the current literature regarding the application and clinical effectiveness of PRP injections, specifically for the treatment of non-union fractures. RECENT FINDINGS: The majority of published studies reported that PRP accelerated fracture healing; however, this evidence was predominantly level IV. The lack of randomised, clinical trials (level I-II evidence) is currently hampering the successful clinical translation of PRP as a therapy for non-union fractures. This is despite the positive reports regarding its potential to heal non-union fractures, when used in isolation or in combination with other forms of treatment. Future recommendations to facilitate clinical translation and acceptance of PRP as a therapy include the need to investigate the effects of administering higher volumes of PRP (i.e. 5-20 mL) along with the requirement for more prolonged (> 11 months) randomised clinical trials
HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files.
This article is open access.The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492(HER2)) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492(HER2) (D492(HER2/EGFR)) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492(HER2/EGFR) xenografts grow slower than the D492(HER2) tumors, while overexpression of EGFR alone (D492(EGFR)) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492(HER2) xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492 cells, EGFR can behave as a tumor suppressor, by pushing the cells towards epithelial differentiation.Landspitali University Hospital Science Fund,
University of Iceland Research Fund, Science and Technology Policy Council Research
Fund and Grant of Excellence, ‘Göngum saman’, a supporting group for breast cancer
research in Iceland
Heterogeneity assessment of functional T cell avidity.
The potency of cellular immune responses strongly depends on T cell avidity to antigen. Yet, functional avidity measurements are rarely performed in patients, mainly due to the technical challenges of characterizing heterogeneous T cells. The mean functional T cell avidity can be determined by the IFN-γ Elispot assay, with titrated amounts of peptide. Using this assay, we developed a method revealing the heterogeneity of functional avidity, represented by the steepness/hillslope of the peptide titration curve, documented by proof of principle experiments and mathematical modeling. Our data show that not only natural polyclonal CD8 T cell populations from cancer patients, but also monoclonal T cells differ strongly in their heterogeneity of functional avidity. Interestingly, clones and polyclonal cells displayed comparable ranges of heterogeneity. We conclude that besides the mean functional avidity, it is feasible and useful to determine its heterogeneity (hillslope) for characterizing T cell responses in basic research and patient investigation
The influence of hydrological regimes on sex ratios and spatial segregation of the sexes in two dioecious riparian shrub species in northern Sweden
River management practices have altered the hydrological regimes of many rivers and also altered the availability of regeneration niches for riparian species. We investigated the impact of changed hydrological regimes on the sex ratios and the Spatial Segregation of the Sexes (SSS) in the dioecious species Salix myrsinifolia Salisb.–phylicifolia L. and S. lapponum L. by studying the free-flowing Vindel River and the regulated Ume River in northern Sweden. We surveyed sex ratios of these species in 12 river reaches on the Vindel River and in 17 reaches on the Ume River. In addition, we surveyed the sex and location above mean river stage of 1,002 individuals across both river systems to investigate the SSS of both species. Cuttings were collected from male and female individuals of S. myrsinifolia–phylicifolia from both rivers and subjected to four different water table regimes in a greenhouse experiment to investigate growth response between the sexes. We found an M/F sex ratio in both river systems similar to the regional norm of 0.62 for S. myrsinifolia–phylicifolia and of 0.42 for S. lapponum. We found no evidence of SSS in either the free-flowing Vindel River or the regulated Ume River. In the greenhouse experiment, hydrological regime had a significant effect on shoot and root dry weight and on root length. Significantly higher shoot dry weights were found in females than in males and significantly different shoot and root dry weights were found between cuttings taken from the two rivers. We concluded that changed hydrological regimes are likely to alter dimensions of the regeneration niche and therefore to influence sex ratios and SSS at an early successional stage, making it difficult to find clear spatial patterns once these species reach maturity and can be sexed
The disruption of proteostasis in neurodegenerative diseases
Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
- …
