6,882 research outputs found
Near minimum time path planning for bearing-only localisation and mapping
The main contribution of this paper is an algorithm for integrating motion planning and simultaneous localisation and mapping (SLAM). Accuracy of the maps and the robot locations computed using SLAM is strongly dependent on the characteristics of the environment, for example feature density, as well as the speed and direction of motion of the robot. Appropriate control of the robot motion is particularly important in bearing-only SLAM, where the information from a moving sensor is essential. In this paper a near minimum time path planning algorithm with a finite planning horizon is proposed for bearing-only SLAM. The objective of the algorithm is to achieve a predefined mapping precision while maintaining acceptable vehicle location uncertainty in the minimum time. Simulation results have shown the effectiveness of the proposed method. © 2005 IEEE
The role of stoichiometric vacancy periodicity in pressure-induced amorphization of the Ga2SeTe2 semiconductor alloy
We observe that pressure-induced amorphization of Ga2SeTe2 (a III-VI
semiconductor) is directly influenced by the periodicity of its intrinsic
defect structures. Specimens with periodic and semi-periodic two-dimensional
vacancy structures become amorphous around 10-11 GPa in contrast to those with
aperiodic structures, which amorphize around 7-8 GPa. The result is a notable
instance of altering material phase-change properties via rearrangement of
stoichiometric vacancies as opposed to adjusting their concentrations. Based on
our experimental findings, we posit that periodic two-dimensional vacancy
structures in Ga2SeTe2 provide an energetically preferred crystal lattice that
is less prone to collapse under applied pressure. This is corroborated through
first-principles electronic structure calculations, which demonstrate that the
energy stability of III-VI structures under hydrostatic pressure is highly
dependent on the configuration of intrinsic vacancies
Metabolic analysis of the interaction between plants and herbivores
Insect herbivores by necessity have to deal with a large arsenal of plant defence metabolites. The levels of defence compounds may be increased by insect damage. These induced plant responses may also affect the metabolism and performance of successive insect herbivores. As the chemical nature of induced responses is largely unknown, global metabolomic analyses are a valuable tool to gain more insight into the metabolites possibly involved in such interactions. This study analyzed the interaction between feral cabbage (Brassica oleracea) and small cabbage white caterpillars (Pieris rapae) and how previous attacks to the plant affect the caterpillar metabolism. Because plants may be induced by shoot and root herbivory, we compared shoot and root induction by treating the plants on either plant part with jasmonic acid. Extracts of the plants and the caterpillars were chemically analysed using Ultra Performance Liquid Chromatography/Time of Flight Mass Spectrometry (UPLCT/MS). The study revealed that the levels of three structurally related coumaroylquinic acids were elevated in plants treated on the shoot. The levels of these compounds in plants and caterpillars were highly correlated: these compounds were defined as the ‘metabolic interface’. The role of these metabolites could only be discovered using simultaneous analysis of the plant and caterpillar metabolomes. We conclude that a metabolomics approach is useful in discovering unexpected bioactive compounds involved in ecological interactions between plants and their herbivores and higher trophic levels.
How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group?
This work was financially support by a Marie Curie Initial Training Network grant, “Understanding the evolutionary origin of biological diversity” (ITN-2008–213780 SPECIATION), grants from the Academy of Finland to A.H. (project 132619) and M.K. (projects 268214 and 272927), a grant from NERC, UK to M.G.R. (grant NE/J020818/1), and NERC, UK PhD studentship to D.J.P. (NE/I528634/1).For many organisms the ability to cold acclimate with the onset of seasonal cold has major implications for their fitness. In insects, where this ability is widespread, the physiological changes associated with increased cold tolerance have been well studied. Despite this, little work has been done to trace changes in gene expression during cold acclimation that lead to an increase in cold tolerance. We used an RNA-Seq approach to investigate this in two species of the Drosophila virilis group. We found that the majority of genes that are differentially expressed during cold acclimation differ between the two species. Despite this, the biological processes associated with the differentially expressed genes were broadly similar in the two species. These included: metabolism, cell membrane composition, and circadian rhythms, which are largely consistent with previous work on cold acclimation/cold tolerance. In addition, we also found evidence of the involvement of the rhodopsin pathway in cold acclimation, a pathway that has been recently linked to thermotaxis. Interestingly, we found no evidence of differential expression of stress genes implying that long-term cold acclimation and short-term stress response may have a different physiological basis.PostprintPeer reviewe
Evidence for Anthropogenic Surface Loading as Trigger Mechanism of the 2008 Wenchuan Earthquake
Two and a half years prior to China's M7.9 Wenchuan earthquake of May 2008,
at least 300 million metric tons of water accumulated with additional seasonal
water level changes in the Minjiang River Valley at the eastern margin of the
Longmen Shan. This article shows that static surface loading in the Zipingpu
water reservoir induced Coulomb failure stresses on the nearby Beichuan thrust
fault system at <17km depth. Triggering stresses exceeded levels of daily lunar
and solar tides and perturbed a fault area measuring 416+/-96km^2. These stress
perturbations, in turn, likely advanced the clock of the mainshock and directed
the initial rupture propagation upward towards the reservoir on the
"Coulomb-like" Beichuan fault with rate-and-state dependent frictional
behavior. Static triggering perturbations produced up to 60 years (0.6%) of
equivalent tectonic loading, and show strong correlations to the coseismic
slip. Moreover, correlations between clock advancement and coseismic slip,
observed during the mainshock beneath the reservoir, are strongest for a longer
seismic cycle (10kyr) of M>7 earthquakes. Finally, the daily event rate of the
micro-seismicity (M>0.5) correlates well with the static stress perturbations,
indicating destabilization.Comment: 22 pages, 4 figures, 3 table
Biofilter aquaponic system for nutrients removal from fresh market wastewater
Aquaponics is a significant wastewater treatment system which refers to the combination of conventional aquaculture (raising aquatic organism) with hydroponics (cultivating plants in water) in a symbiotic environment. This system has a high ability in removing nutrients compared to conventional methods because it is a natural and environmentally friendly system (aquaponics). The current chapter aimed to review the possible application of aquaponics system to treat fresh market wastewater with the intention to highlight the mechanism of phytoremediation occurs in aquaponic system. The literature revealed that aquaponic system was able to remove nutrients in terms of nitrogen and phosphorus
Growing old, yet staying young: The role of telomeres in bats' exceptional longevity
Understanding aging is a grand challenge in biology. Exceptionally long-lived animals have mechanisms that underpin extreme longevity. Telomeres are protective nucleotide repeats on chromosome tips that shorten with cell division, potentially limiting life span. Bats are the longest-lived mammals for their size, but it is unknown whether their telomeres shorten. Using >60 years of cumulative mark-recapture field data, we show that telomeres shorten with age inRhinolophus ferrumequinumandMiniopterus schreibersii, but not in the bat genus with greatest longevity,Myotis. As in humans, telomerase is not expressed inMyotis myotisblood or fibroblasts. Selection tests on telomere maintenance genes show thatATMandSETX, which repair and prevent DNA damage, potentially mediate telomere dynamics inMyotisbats. Twenty-one telomere maintenance genes are differentially expressed inMyotis, of which 14 are enriched for DNA repair, and 5 for alternative telomere-lengthening mechanisms. We demonstrate how telomeres, telomerase, and DNA repair genes have contributed to the evolution of exceptional longevity inMyotisbats, advancing our understanding of healthy aging
Genes Suggest Ancestral Colour Polymorphisms Are Shared across Morphologically Cryptic Species in Arctic Bumblebees
email Suzanne orcd idCopyright: © 2015 Williams et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.
The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas
Beyond Gross-Pitaevskii Mean Field Theory
A large number of effects related to the phenomenon of Bose-Einstein
Condensation (BEC) can be understood in terms of lowest order mean field
theory, whereby the entire system is assumed to be condensed, with thermal and
quantum fluctuations completely ignored. Such a treatment leads to the
Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although
this theory works remarkably well for a broad range of experimental parameters,
a more complete treatment is required for understanding various experiments,
including experiments with solitons and vortices. Such treatments should
include the dynamical coupling of the condensate to the thermal cloud, the
effect of dimensionality, the role of quantum fluctuations, and should also
describe the critical regime, including the process of condensate formation.
The aim of this Chapter is to give a brief but insightful overview of various
recent theories, which extend beyond the GPE. To keep the discussion brief,
only the main notions and conclusions will be presented. This Chapter
generalizes the presentation of Chapter 1, by explicitly maintaining
fluctuations around the condensate order parameter. While the theoretical
arguments outlined here are generic, the emphasis is on approaches suitable for
describing single weakly-interacting atomic Bose gases in harmonic traps.
Interesting effects arising when condensates are trapped in double-well
potentials and optical lattices, as well as the cases of spinor condensates,
and atomic-molecular coupling, along with the modified or alternative theories
needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by
P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer
Verlag
- …
