263 research outputs found
The kaon semileptonic form factor in Nf=2+1 domain wall lattice QCD with physical light quark masses
http://link.springer.com/article/10.1007%2FJHEP06%282015%2916
Changes in BNP and cardiac troponin I after high-intensity interval and endurance exercise in heart failure patients and healthy controls
Exercise training represents a cornerstone of contemporary cardiac rehabilitation. Recently, high-intensity interval training (HIT) has been popularized for heart failure (HF) patients (1) and may serve as a superior mode of exercise compared to traditional endurance exercise training. However, there is controversy regarding the safety (2) and the direct effects of HIT on the heart. Previous studies have demonstrated that an acute bout of exercise leads to an increase in cardiac troponin (cTn), a biomarker for cardiac injury, and B-type natriuretic peptide (BNP), a marker for cardiomyocyte stress (3,4). Exercise-induced elevation in these biomarkers is related to exercise intensity and duration (4,5), and may occur to a larger extend in patients with cardiovascular risk factors (6). To date, no previous study: 1. compared changes in cTn and BNP between endurance exercise and HIT, and 2. explored differences in exercise-induced changes in cTn and BNP between HF patients and controls
Optimal Grid Drawings of Complete Multipartite Graphs and an Integer Variant of the Algebraic Connectivity
How to draw the vertices of a complete multipartite graph on different
points of a bounded -dimensional integer grid, such that the sum of squared
distances between vertices of is (i) minimized or (ii) maximized? For both
problems we provide a characterization of the solutions. For the particular
case , our solution for (i) also settles the minimum-2-sum problem for
complete bipartite graphs; the minimum-2-sum problem was defined by Juvan and
Mohar in 1992. Weighted centroidal Voronoi tessellations are the solution for
(ii). Such drawings are related with Laplacian eigenvalues of graphs. This
motivates us to study which properties of the algebraic connectivity of graphs
carry over to the restricted setting of drawings of graphs with integer
coordinates.Comment: Appears in the Proceedings of the 26th International Symposium on
Graph Drawing and Network Visualization (GD 2018
Calreticulin is a secreted BMP antagonist, expressed in Hensen's node during neural induction
Hensen's node is the “organizer” of the avian and mammalian early embryo. It has many functions, including neural induction and patterning of the ectoderm and mesoderm. Some of the signals responsible for these activities are known but these do not explain the full complexity of organizer activity. Here we undertake a functional screen to discover new secreted factors expressed by the node at this time of development. Using a Signal Sequence Trap in yeast, we identify several candidates. Here we focus on Calreticulin. We show that in addition to its known functions in intracellular Calcium regulation and protein folding, Calreticulin is secreted, it can bind to BMP4 and act as a BMP antagonist in vivo and in vitro. Calreticulin is not sufficient to account for all organizer functions but may contribute to the complexity of its activity
Damage and repair classification in reinforced concrete beams using frequency domain data
This research aims at developing a new vibration-based damage classification technique that can efficiently be applied to a real-time large data. Statistical pattern recognition paradigm is relevant to perform a reliable site-location damage diagnosis system. By adopting such paradigm, the finite element and other inverse models with their intensive computations, corrections and inherent inaccuracies can be avoided. In this research, a two-stage combination between principal component analysis and Karhunen-Loéve transformation (also known as canonical correlation analysis) was proposed as a statistical-based damage classification technique. Vibration measurements from frequency domain were tested as possible damage-sensitive features. The performance of the proposed system was tested and verified on real vibration measurements collected from five laboratory-scale reinforced concrete beams modelled with various ranges of defects. The results of the system helped in distinguishing between normal and damaged patterns in structural vibration data. Most importantly, the system further dissected reasonably each main damage group into subgroups according to their severity of damage. Its efficiency was conclusively proved on data from both frequency response functions and response-only functions. The outcomes of this two-stage system showed a realistic detection and classification and outperform results from the principal component analysis-only. The success of this classification model is substantially tenable because the observed clusters come from well-controlled and known state conditions
Heart failure is associated with exaggerated endothelial ischaemia-reperfusion injury and attenuated effect of ischaemic preconditioning
Background Reperfusion is mandatory after ischaemia, but it also triggers ischaemia–reperfusion (IR)-injury. It is currently unknown whether heart failure alters the magnitude of IR-injury. Ischaemic preconditioning can limit IR-injury. Since ischaemic preconditioning is typically applied in subjects at risk for cardiovascular complications, it is of clinical importance to understand its efficacy in heart failure patients.
Objective To examine the magnitude of endothelial IR-injury, and the ability of ischaemic preconditioning to protect against endothelial IR-injury in heart failure.
Methods We included 15 subjects with heart failure (67 ± 10 years, New York Heart Association class II/III) and 15 healthy, age- and sex-matched controls (65 ± 9 years). We examined brachial artery endothelial function using flow-mediated dilation before and after arm IR (induced by 5-min ischaemic handgrip exercise +15 min reperfusion). IR was preceded by ischaemic preconditioning (consisting in three cycles of 5-min upper arm cuff inflation to 220 mmHg) or no inflation.
Results A significant interaction-effect was found for the change in flow-mediated dilation after IR between groups (two-way ANOVA interaction-effect: p = 0.01). Whilst post-hoc analysis revealed a significantly decline in flow-mediated dilation in both groups (p < 0.05), the decline in flow-mediated dilation in heart failure patients (6.2 ± 3.6% to 3.3 ± 1.8%) was significantly larger than that observed in controls (4.9 ± 2.1 to 4.1 ± 2.0). Neither in heart failure patients nor controls was the decrease in flow-mediated dilation after IR altered by ischaemic preconditioning (three-way ANOVA interaction: p = 0.87).
Conclusion We found that patients with heart failure are associated with exaggerated endothelial IR-injury compared with age- and sex-matched, healthy controls, which may contribute to the poor clinical prognosis in heart failure. Furthermore, we found no protective effect of ischaemic preconditioning (3 × 5-min forearm ischaemia) against endothelial IR-injury in heart failure patients
Liver cancer immunoassay with magnetic nanoparticles and MgO-based magnetic tunnel junction sensors
This journal issue is proceedings of the 56th 56th Conference on Magnetism and Magnetic MaterialsSession DV - Sensors 2 (Poster Session): no. DV-07We have demonstrated the detection of alpha-fetoprotein (AFP) labeled with magnetic nanoparticles (MNPs) using MgO-based magnetic tunnel junction (MTJ) sensors. AFP is an important hepatic tumor biomarker and the detection of AFP has significant applications for clinical diagnostics and immunoassay for early-stage liver cancer indications. In this work, MgO-based MTJ sensors and 20-nm iron-oxide magnetic nanoparticles (MNPs) were used for detecting AFP antigens by a sandwich-assay configuration. The MTJ sensors with a sensing area of 4 × 2 μm 2 possess tunneling magnetoresistance (TMR) of 122 and sensitivity of 0.95/Oe at room temperature. The target AFP antigens of three concentrations were successfully detected, and the experimental data indicate that the resistance variations of the MTJ sensor increased with the AFP concentration ratios proportionally. These results demonstrate that MgO-based MTJ sensors together with MNPs are a promising biosensing platform for liver cancer immunoassay. © 2012 American Institute of Physics.published_or_final_versionThe 56th Conference on Magnetism and Magnetic Materials, Scottsdale, AZ., 30 October-3 November 2011. In Journal of Applied Physics, 2012, v. 111 n. 7, article no. 07E50
Spectral-based mesh segmentation
In design and manufacturing, mesh segmentation is required for FACE construction in boundary representation (BRep), which in turn is central for featurebased design, machining, parametric CAD and reverse engineering, among others -- Although mesh segmentation is dictated by geometry and topology, this article focuses on the topological aspect (graph spectrum), as we consider that this tool has not been fully exploited -- We preprocess the mesh to obtain a edgelength homogeneous triangle set and its Graph Laplacian is calculated -- We then produce a monotonically increasing permutation of the Fiedler vector (2nd eigenvector of Graph Laplacian) for encoding the connectivity among part feature submeshes -- Within the mutated vector, discontinuities larger than a threshold (interactively set by a human) determine the partition of the original mesh -- We present tests of our method on large complex meshes, which show results which mostly adjust to BRep FACE partition -- The achieved segmentations properly locate most manufacturing features, although it requires human interaction to avoid over segmentation -- Future work includes an iterative application of this algorithm to progressively sever features of the mesh left from previous submesh removal
Clinical pharmacist intervention in reviewing prescriptions of drugs administered by an enteral feeding tube in adult and pediatric intensive care units
The influence of mass tourism and hygroscopic inertia in relative humidity fluctuations of museums located in historical buildings
The preservation of artefacts in museum collections is profoundly affected by fluctuations in temperature and relative humidity. This work presents the results of an experimental laboratorial study, conducted in a flow chamber to demonstrate the enormous potential of hygroscopic materials in stabilizing interior relative humidity. In order to assess the risk of mass tourism and hygroscopic inertia of finishing materials, associated with the hygrothermal behavior of museums, an analysis of several numerical scenarios, with a different number of visitors per hour, and finishing materials, in order to quantify the risks associated with the fluctuations of relative humidity. The results of sensitivity studies performed are presented for the case of a museum in Porto
- …
