110 research outputs found
Managing the climate commons at the nexus of ecology, behaviour and economics
Sustainably managing coupled ecological–economic systems requires not only an understanding of the environmental factors that affect them, but also knowledge of the interactions and feedback cycles that operate between resource dynamics and activities attributable to human intervention. The socioeconomic dynamics, in turn, call for an investigation of the behavioural drivers behind human action. We argue that a multidisciplinary approach is needed in order to tackle the increasingly pressing and intertwined environmental challenges faced by modern societies. Academic contributions to climate change policy have been constrained by methodological and terminological differences, so we discuss how programmes aimed at cross-disciplinary education and involvement in governance may help to unlock scholars' potential to propose new solutions
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Positive feedback and noise activate the stringent response regulator Rel in mycobacteria
Phenotypic heterogeneity in an isogenic, microbial population enables a
subset of the population to persist under stress. In mycobacteria, stresses
like nutrient and oxygen deprivation activate the stress response pathway
involving the two-component system MprAB and the sigma factor, SigE. SigE in
turn activates the expression of the stringent response regulator, rel. The
enzyme polyphosphate kinase 1 (PPK1) regulates this pathway by synthesizing
polyphosphate required for the activation of MprB. The precise manner in which
only a subpopulation of bacterial cells develops persistence, remains unknown.
Rel is required for mycobacterial persistence. Here we show that the
distribution of rel expression levels in a growing population of mycobacteria
is bimodal with two distinct peaks corresponding to low (L) and high (H)
expression states, and further establish that a positive feedback loop
involving the mprAB operon along with stochastic gene expression are
responsible for the phenotypic heterogeneity. Combining single cell analysis by
flow cytometry with theoretical modeling, we observe that during growth,
noise-driven transitions take a subpopulation of cells from the L to the H
state within a "window of opportunity" in time preceding the stationary phase.
We find evidence of hysteresis in the expression of rel in response to changing
concentrations of PPK1. Our results provide, for the first time, evidence that
bistability and stochastic gene expression could be important for the
development of "heterogeneity with an advantage" in mycobacteria.Comment: Accepted for publication in PLoS On
Dopamine Regulates Angiogenesis in Normal Dermal Wound Tissues
Cutaneous wound healing is a normal physiological process and comprises different phases. Among these phases, angiogenesis or new blood vessel formation in wound tissue plays an important role. Skin is richly supplied by sympathetic nerves and evidences indicate the significant role of the sympathetic nervous system in cutaneous wound healing. Dopamine (DA) is an important catecholamine neurotransmitter released by the sympathetic nerve endings and recent studies have demonstrated the potent anti-angiogenic action of DA, which is mediated through its D2 DA receptors. We therefore postulate that this endogenous catecholamine neurotransmitter may have a role in the neovascularization of dermal wound tissues and subsequently in the process of wound healing. In the present study, the therapeutic efficacy of D2 DA receptor antagonist has been investigated for faster wound healing in a murine model of full thickness dermal wound. Our results indicate that treatment with specific D2 DA receptor antagonist significantly expedites the process of full thickness normal dermal wound healing in mice by inducing angiogenesis in wound tissues. The underlined mechanisms have been attributed to the up-regulation of homeobox transcription factor HoxD3 and its target α5β1 integrin, which play a pivotal role in wound angiogenesis. Since D2 DA receptor antagonists are already in clinical use for other disorders, these results have significant translational value from the bench to the bedside for efficient wound management along with other conventional treatment modalities
Dopamine Regulates Mobilization of Mesenchymal Stem Cells during Wound Angiogenesis
Angiogenesis is an important step in the complex biological and molecular events leading to successful healing of dermal wounds. Among the different cellular effectors of wound angiogenesis, the role of mesenchymal stem cells (MSCs) is of current interest due to their transdifferentiation and proangiogenic potentials. Skin is richly innervated by sympathetic nerves which secrete dopamine (DA) and we have recently shown that concentration of DA present in synaptic cleft can significantly inhibit wound tissue neovascularization. As recent reports indicate that MSCs by mobilizing into wound bed play an important role in promoting wound angiogenesis, we therefore investigated the effect of DA on the migration of MSCs in wound tissues. DA acted through its D2 receptors present in the MSCs to inhibit their mobilization to the wound beds by suppressing Akt phosphorylation and actin polymerization. In contrast, this inhibitory effect of DA was reversed after treatment with specific DA D2 receptor antagonist. Increased mobilization of MSCs was demonstrated in the wound site following blockade of DA D2 receptor mediated actions, and this in turn was associated with significantly more angiogenesis in wound tissues. This study is of translational value and indicates use of DA D2 receptor antagonists to stimulate mobilization of these stem cells for faster regeneration of damaged tissues
Sources of variation for indoor nitrogen dioxide in rural residences of Ethiopia
<p>Abstract</p> <p>Background</p> <p>Unprocessed biomass fuel is the primary source of indoor air pollution (IAP) in developing countries. The use of biomass fuel has been linked with acute respiratory infections. This study assesses sources of variations associated with the level of indoor nitrogen dioxide (NO<sub>2</sub>).</p> <p>Materials and methods</p> <p>This study examines household factors affecting the level of indoor pollution by measuring NO<sub>2</sub>. Repeated measurements of NO<sub>2 </sub>were made using a passive diffusive sampler. A <it>Saltzman </it>colorimetric method using a spectrometer calibrated at 540 nm was employed to analyze the mass of NO<sub>2 </sub>on the collection filter that was then subjected to a mass transfer equation to calculate the level of NO<sub>2 </sub>for the 24 hours of sampling duration. Structured questionnaire was used to collect data on fuel use characteristics. Data entry and cleaning was done in EPI INFO version 6.04, while data was analyzed using SPSS version 15.0. Analysis of variance, multiple linear regression and linear mixed model were used to isolate determining factors contributing to the variation of NO<sub>2 </sub>concentration.</p> <p>Results</p> <p>A total of 17,215 air samples were fully analyzed during the study period. Wood and crop were principal source of household energy. Biomass fuel characteristics were strongly related to indoor NO<sub>2 </sub>concentration in one-way analysis of variance. There was variation in repeated measurements of indoor NO<sub>2 </sub>over time. In a linear mixed model regression analysis, highland setting, wet season, cooking, use of fire events at least twice a day, frequency of cooked food items, and interaction between ecology and season were predictors of indoor NO<sub>2 </sub>concentration. The volume of the housing unit and the presence of kitchen showed little relevance in the level of NO<sub>2 </sub>concentration.</p> <p>Conclusion</p> <p>Agro-ecology, season, purpose of fire events, frequency of fire activities, frequency of cooking and physical conditions of housing are predictors of NO<sub>2 </sub>concentration. Improved kitchen conditions and ventilation are highly recommended.</p
Testing a global standard for quantifying species recovery and assessing conservation impact
Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a “Green List of Species” (now the IUCN Green Status of Species). A draft Green Status framework for assessing species’ progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species’ viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species’ recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard
Jet quenching
We present a comprehensive review of the physics of hadron and jet production
at large transverse momentum in high-energy nucleus-nucleus collisions.
Emphasis is put on experimental and theoretical "jet quenching" observables
that provide direct information on the (thermo)dynamical properties of hot and
dense QCD matter.Comment: Springer Verlag. Landolt-Boernstein Vol. 1-23A. 49 pages. 36 figures.
Minor corrections & references adde
Erratum: "Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data" (2019, ApJ, 879, 10)
This is a correction for 2019 ApJ 879 1
All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data
We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000 Hz and with a frequency time derivative in the range of [-1.0,+0.1]×10-8 Hz/s. Such a signal could be produced by a nearby, spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the LIGO data from the first six months of Advanced LIGO's and Advanced Virgo's third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (C.L.) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼1.7×10-25 near 200 Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are ∼6.3×10-26. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95% C.L. upper limits on the strain amplitude are ∼1.4×10-25. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of ∼2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched
- …
