26 research outputs found
The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat
We describe the SPIDER flight cryostat, which is designed to cool six
millimeter-wavelength telescopes during an Antarctic long-duration balloon
flight. The cryostat, one of the largest to have flown on a stratospheric
payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6
K. Stainless steel capillaries facilitate a high flow impedance connection
between the main liquid helium tank and a smaller superfluid tank, allowing the
latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank.
Each telescope houses a closed cycle helium-3 adsorption refrigerator that
further cools the focal planes down to 300 mK. Liquid helium vapor from the
main tank is routed through heat exchangers that cool radiation shields,
providing negative thermal feedback. The system performed successfully during a
17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold
time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig
Submillimeter Polarization Spectrum of the Carina Nebula
Linear polarization maps of the Carina Nebula were obtained at 250, 350, and 500 μm during the 2012 flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol). These measurements are combined with Planck 850 μm data in order to produce a submillimeter spectrum of the polarization fraction of the dust emission, averaged over the cloud. This spectrum is flat to within ±15% (relative to the 350 μm polarization fraction). In particular, there is no evidence for a pronounced minimum of the spectrum near 350 μm, as suggested by previous ground-based measurements of other molecular clouds. This result of a flat polarization spectrum in Carina is consistent with recently published BLASTPol measurements of the Vela C molecular cloud and also agrees with a published model for an externally illuminated, dense molecular cloud by Bethell and collaborators. The shape of the spectrum in Carina does not show any dependence on the radiative environment of the dust, as quantified by the Planck-derived dust temperature or dust optical depth at 353 GHz
Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas
Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation
Relative Alignment between the Magnetic Field and Molecular Gas Structure in the Vela C Giant Molecular Cloud Using Low- and High-density Tracers
We compare the magnetic field orientation for the young giant molecular cloud Vela C inferred from
500 μm polarization maps made with the BLASTPol balloon-borne polarimeter to the orientation of structures in the
integrated line emission maps from Mopra observations. Averaging over the entire cloud we find that elongated
structures in integrated line-intensity or zeroth-moment maps, for low-density tracers such as 12CO and 13CO J → 1 – 0,
are statistically more likely to align parallel to the magnetic field, while intermediate- or high-density tracers show (on
average) a tendency for alignment perpendicular to the magnetic field. This observation agrees with previous studies of
the change in relative orientation with column density in Vela C, and supports a model where the magnetic field is
strong enough to have influenced the formation of dense gas structures within Vela C. The transition from parallel to no
preferred/perpendicular orientation appears to occur between the densities traced by 13CO and by C18O J → 1 – 0.
Using RADEX radiative transfer models to estimate the characteristic number density traced by each molecular line, we
find that the transition occurs at a molecular hydrogen number density of approximately 103 cm−3
. We also see that the
Centre Ridge (the highest column density and most active star-forming region within Vela C) appears to have a
transition at a lower number density, suggesting that this may depend on the evolutionary state of the cloud
Particle response of antenna-coupled TES arrays: results from SPIDER and the laboratory
Future mm-wave and sub-mm space missions will employ large arrays of multiplexed transition-edge-sensor (TES) bolometers. Such instruments must contend with the high flux of cosmic rays beyond our atmosphere that induce ‘glitches’ in bolometer data, which posed a challenge to data analysis from the Planck bolometers. Future instruments will face the additional challenges of shared substrate wafers and multiplexed readout wiring. In this work, we explore the susceptibility of modern TES arrays to the cosmic ray environment of space using two data sets: the 2015 long-duration balloon flight of the SPIDER cosmic microwave background polarimeter, and a laboratory exposure of SPIDER flight hardware to radioactive sources. We find manageable glitch rates and short glitch durations, leading to minimal effect on SPIDER analysis. We constrain energy propagation within the substrate through a study of multi-detector coincidences and give a preliminary look at pulse shapes in laboratory data
A New Limit on CMB Circular Polarization from SPIDER
We present a new upper limit on cosmic microwave background (CMB) circular polarization from the 2015 flight of Spider, a balloon-borne telescope designed to search for B-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the nonzero circular-to-linear polarization coupling of the half-wave plate polarization modulators, data from Spider's 2015 Antarctic flight provide a constraint on Stokes V at 95 and 150 GHz in the range . No other limits exist over this full range of angular scales, and Spider improves on the previous limit by several orders of magnitude, providing 95% C.L. constraints on ranging from 141 to 255 μK2 at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain even stronger constraints on circular polarization
Recommended from our members
Pre-flight integration and characterization of the SPIDER balloon-borne telescope
We present the results of integration and characterization of the Spider instrument after the 2013 pre-flight campaign. SPIDER is a balloon-borne polarimeter designed to probe the primordial gravitational wave signal in the degree-scale B-mode polarization of the cosmic microwave background. With six independent telescopes housing over 2000 detectors in the 94 GHz and 150 GHz frequency bands, SPIDER will map 7.5% of the sky with a depth of 11 to 14 mu K.arcmin at each frequency, which is a factor of similar to 5 improvement over Planck. We discuss the integration of the pointing, cryogenic, electronics, and power sub-systems, as well as pre-flight characterization of the detectors and optical systems. SPIDER is well prepared for a December 2014 flight from Antarctica, and is expected to be limited by astrophysical foreground emission, and not instrumental sensitivity, over the survey region
Recommended from our members
280 GHz Focal Plane Unit Design and Characterization for the SPIDER-2 Suborbital Polarimeter
We describe the construction and characterization of the 280 GHz bolometric focal plane units (FPUs) to be deployed on the second flight of the balloon-borne SPIDER instrument. These FPUs are vital to SPIDER's primary science goal of detecting or placing an upper limit on the amplitude of the primordial gravitational wave signature in the cosmic microwave background (CMB) by constraining the B-mode contamination in the CMB from Galactic dust emission. Each 280 GHz focal plane contains a 16 x 16 grid of corrugated silicon feedhorns coupled to an array of aluminum-manganese transition-edge sensor (TES) bolometers fabricated on 150 mm diameter substrates. In total, the three 280 GHz FPUs contain 1,530 polarization sensitive bolometers (765 spatial pixels) optimized for the low loading environment in flight and read out by time-division SQUID multiplexing. In this paper we describe the mechanical, thermal, and magnetic shielding architecture of the focal planes and present cryogenic measurements which characterize yield and the uniformity of several bolometer parameters. The assembled FPUs have high yields, with one array as high as 95% including defects from wiring and readout. We demonstrate high uniformity in device parameters, finding the median saturation power for each TES array to be ~3 pW at 300 mK with a less than 6% variation across each array at one standard deviation. These focal planes will be deployed alongside the 95 and 150 GHz telescopes in the SPIDER-2 instrument, slated to fly from McMurdo Station in Antarctica in December 2018
