18 research outputs found

    A barrier and techno-economic analysis of small-scale bCHP (biomass combined heat and power) schemes in the UK

    Get PDF
    bCHP (Biomass combined heat and power) systems are highly efficient at smaller-scales when a significant proportion of the heat produced can be effectively utilised for hot water, space heating or industrial heating purposes. However, there are many barriers to project development and this has greatly inhibited deployment in the UK. Project viability is highly subjective to changes in policy, regulation, the finance market and the low cost fossil fuel incumbent. The paper reviews the barriers to small-scale bCHP project development in the UK along with a case study of a failed 1.5MWel bCHP scheme. The paper offers possible explanations for the project's failure and suggests adaptations to improve the project resilience. Analysis of the project's: capital structuring contract length and bankability; feedstock type and price uncertainty, and plant oversizing highlight the negative impact of the existing project barriers on project development. The research paper concludes with a discussion on the effects of these barriers on the case study project and this industry more generally. A greater understanding of the techno-economic effects of some barriers for small-scale bCHP schemes is demonstrated within this paper, along with some methods for improving the attractiveness and resilience of projects of this kind

    The potential for bioenergy crops to contribute to meeting GB heat and electricity demands

    Get PDF
    The paper presents a model system, which consists of a partial equilibrium model and process-based terrestrial biogeochemistry models, to determine the optimal distributions of both Miscanthus (Miscanthus × giganteus) and short rotation coppice willow (SRC) (Salix. viminalis L. x S. viminalis var Joruun) in Great Britain (GB), as well as their potential contribution to meet heat and electricity demand in GB. Results show that the potential contribution of Miscanthus and SRC to heat and electricity demand is significant. Without considering farm-scale economic constraints, Miscanthus and SRC could generate, in an economically competitive way compared with other energy generation costs, 224 800 GWh yr?1 heat and 112 500 GWh yr?1 electricity, with 8 Mha of available land under Miscanthus and SRC, accounting for 66% of total heat demand and 62% of total electricity demand respectively. Given the pattern of heat and electricity demand, and the relative yields of Miscanthus and SRC in different parts of GB, Miscanthus is mainly favoured in the Midlands and areas in the South of GB, whereas SRC is favoured in Scotland, the Midlands and areas in the South of G

    Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables

    No full text
    The majority of bulk chemicals are derived from crude oil, but the move to biorenewable resources is gaining both societal and commercial interest. Reviewing this transition, we first summarise the types of today's biomass sources and their economical relevance. Then, we assess the biobased productions of three important bulk chemicals: acrylic acid, adipic acid and epsilon-caprolactam. These are the key monomers for high-end polymers (polyacrylates, nylon 6.6 and nylon 6, respectively) and are all produced globally in excess of two million metric tons per year. The biobased routes for each target molecule are analysed separately, comparing the conventional processes with their sustainable alternatives. Some processes have already received extensive scientific attention. Other, more novel routes are also being considered. We find several common trends: For all three compounds, there are no commercial methods for direct conversion of biobased feedstocks. However, combinations of biotechnologically produced platform chemicals with subsequent chemical modifications are emerging and showing promising results. We then discuss several distinct strategies for implementing biorenewable processes. For each biotechnological and chemocatalytic route, current efficiencies and limitations are presented, but we urge that these routes should be assessed mainly on their potential and prospects for future application. Today, biorenewable routes cannot yet compete with their petrochemical equivalents. However, given that most of them are still in the early stages of development, we foresee their commercial implementation in the next two decades
    corecore