245 research outputs found
Two-phase flow boiling in small to micro-diameter tubes
This thesis is dedicated to the experimental and theoretical study of flow boiling in small to micro diameter tubes using R 134a. Flow pattern, heat transfer and pressure drop studies were conducted in stainless steel cold drawn tubes with internal diameter 2.88,1.1, and 0.52 mm using an existing facility that was designed with a long term research objective of improving the fundamental understanding of flow boiling in small metallic tubes. The facility was moved to the present location from London South Bank University and re-commissioned before carrying out the experiments. The test sections were heated by a direct passage of alternating current and wall temperatures were measured at 15 axial locations by miniature thermocouples that were directly spotwelded at the tube outer wall. A digital high-speed camera was used to simultaneously observe the flow patterns (during the heat transfer tests) directly at a borosilicate glass tube located immediately downstream of the heat transfer test section. The purpose of the flow visualization study was to support understanding of the heat transfer characteristics and development of flow regime-specific models. The heat transfer and pressure drop data of X. Huo (2005) in the 4.26 and 2.01 mm tubes and the flow visualization results of Chen (2006) for the tubes of diameter 4.26,2.88,2.01, and 1.1 mm were included with the new data in an extensive analysis of flow boiling heat transfer and pressure drop in five vertical tubes with internal diameters 4.26, 2.88,2.01, 1.1 and 0.52 mm. The wide range of tube diameter was chosen to investigate the influence of tube size and possibly identify the threshold where the effect of small or micro diameter effects become significant. In the experiments, parameters were varied in the ranges: mass flux 100 to 700 kg/m2s; heat flux 1.6 to 150 kW/m; pressure 6 to 14 bar; quality up to 0.9 and the inlet temperature was controlled at a subcooling of 1-5K. There was no clear significant difference between the characteristics and magnitude of the heat transfer coefficients in the 4.26 mm and 2.88 mm tubes but the coefficients in the 2.01 and 1.1 mm tube were higher. The heat transfer results suggested that a tube size of about 2 mm might be considered as a critical diameter to distinguish small and conventional tubes. Further differences have now been observed in the 0.52 mm tube. These differences, both in flow patterns and heat transfer, indicate a possible second change from small to micro behaviour at diameters less than 1 mm for R 134a. Also, the results showed axial variations in heat transfer characteristics marking the importance of surface conditions on heat transfer. This calls for a further detail investigation to understand the underlying physics in the initiation of boiling, effect of surface condition on nucleation, and structure of newly emerging flow patterns, particularly in very small tubes. Existing correlations were examined using the results of the five tubes and indicated that these correlations do not predict the present small diameter data to a satisfactory degree. Therefore, two new correlations that take into account both magnitude and characteristic effect of tube diameter have been proposed covering the 4.26 mm-1.1 mm and the smallest 0.52 mm tube, respectively. A detailed comparison was also made with the state-of-the-art flow regime-specific model of Thome et al. (2004) and verified that the mechanistic modelling approach has a promising capability of predicting two phase heat transfer in small diameter tubes, although it still requires further development. Some improvements have been proposed and tested against the current data. Using a similar approach, a new two phase pressure drop model has been proposed and compared with the current data with encouraging results.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Ventilator-associated pneumonia in children after cardiac surgery in The Netherlands
We conducted a retrospective cohort study in an academic tertiary care center to characterize ventilator-associated pneumonia (VAP) in pediatric patients after cardiac surgery in The Netherlands. All patients following cardiac surgery and mechanically ventilated for ≥24 h were included. The primary outcome was development of VAP. Secondary outcomes were duration of mechanical ventilation and length of ICU stay. A total of 125 patients were enrolled. Their mean age was 16.5 months. The rate of VAP was 17.1/1,000 mechanical ventilation days. Frequently found organisms were Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus and Pseudomonas aeruginosa. Patients with VAP had longer duration of ventilation and longer ICU stay. Risk factors associated with the development of VAP were a PRISM III score of ≥10 and transfusion of fresh frozen plasma. The mean VAP rate in this population is higher than that reported in general pediatric ICU populations. Children with VAP had a prolonged need for mechanical ventilation and a longer ICU sta
Epidemiological approach to nosocomial infection surveillance data: the Japanese Nosocomial Infection Surveillance System
Surveillance of nosocomial infection is the foundation of infection control. Nosocomial infection surveillance data ought to be summarized, reported, and fed back to health care personnel for corrective action. Using the Japanese Nosocomial Infection Surveillance (JANIS) data, we determined the incidence of nosocomial infections in intensive care units (ICUs) of Japanese hospitals and assessed the impact of nosocomial infections on mortality and length of stay. We also elucidated individual and environmental factors associated with nosocomial infections, examined the benchmarking of infection rates and developed a practical tool for comparing infection rates with case-mix adjustment. The studies carried out to date using the JANIS data have provided valuable information on the epidemiology of nosocomial infections in Japanese ICUs, and this information will contribute to the development of evidence-based infection control programs for Japanese ICUs. We conclude that current surveillance systems provide an inadequate feedback of nosocomial infection surveillance data and, based on our results, suggest a methodology for assessing nosocomial infection surveillance data that will allow infection control professionals to maintain their surveillance systems in good working order
Pandrug-Resistant Acinetobacter baumannii Causing Nosocomial Infections in a University Hospital, Taiwan
The rapid emergence (from 0% before 1998 to 6.5% in 2000) of pandrug-resistant Acinetobacter baumannii (PDRAB) was noted in a university hospital in Taiwan. To understand the epidemiology of these isolates, we studied 203 PDRAB isolates, taken from January 1999 to April 2000: 199 from 73 hospitalized patients treated at different clinical settings in the hospital and 4 from environmental sites in an intensive-care unit. Pulsed-field gel electrophoresis analysis and random amplified polymorphic DNA (RAPD) generated by arbitrarily primed polymerase chain reaction of these 203 isolates showed 10 closely related genotypes (10 clones). One (clone 5), belonging to pulsotype E and RAPD pattern 5, predominated (64 isolates, mostly from patients in intensive care). Increasing use of carbapenems and ciprofloxacin (selective pressure) as well as clonal dissemination might have contributed to the wide spread of PDRAB in this hospital
The pharmacokinetics of cefazolin in patients undergoing elective & semi-elective abdominal aortic aneurysm open repair surgery
Background: Surgical site infections are common, so effective antibiotic concentrations at the sites of infection are required. Surgery can lead to physiological changes influencing the pharmacokinetics of antibiotics. The aim of the study is to evaluate contemporary peri-operative prophylactic dosing of cefazolin by determining plasma and subcutaneous interstitial fluid concentrations in patients undergoing elective of semi-elective abdominal aortic aneurysm (AAA) open repair surgery
Risk Factors for Colonization with Extended-Spectrum β-Lactamase–producing Bacteria and Intensive Care Unit Admission
Coexisting conditions and previous antimicrobial drug exposure predict colonization
Contaminated mouth swabs caused a multi-hospital outbreak of Pseudomonas aeruginosa infection
Entomopathogenic Fungi on Hemiberlesia pitysophila
Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control
Daptomycin antimicrobial activity tested against methicillin-resistant staphylococci and vancomycin-resistant enterococci isolated in European medical centers (2005)
BACKGROUND: Daptomycin is a cyclic lipopeptide with potent activity and broad spectrum against Gram-positive bacteria currently used for the treatment of complicated skin and skin structure infections and bacteremia, including right sided endocarditis. We evaluated the in vitro activity of this compound and selected comparator agents tested against clinical strains of staphylococci and enterococci collected in European medical centers in 2005. METHODS: A total of 4,640 strains from 23 medical centers located in 10 European countries, Turkey and Israel (SENTRY Program platform) were tested for susceptibility by reference broth microdilution methods according to Clinical and Laboratory Standards Institute guidelines and interpretative criteria. Mueller-Hinton broth was supplemented to 50 mg/L Ca(++ )for testing daptomycin. Results for oxacillin (methicillin)-resistant staphylococci and vancomycin-resistant enterococci were analyzed separately. RESULTS: Oxacillin resistance rates among Staphylococcus aureus varied from 2.1% in Sweden to 42.5% in the United Kingdom (UK) and 54.7% in Ireland (29.1% overall), while vancomycin resistance rates varied from 0.0% in France, Sweden and Switzerland to 66.7% in the UK and 71.4% in Ireland among Enterococcus faecium (17.9% overall). All S. aureus strains were inhibited at daptomycin MIC of 1 mg/L (MIC(50/90), 0.25/0.5 mg/L; 100.0% susceptible) and only one coagulase-negative staphylococci strain (0.1%) showed an elevated (>1 mg/L) daptomycin MIC value (4 mg/L). Among E. faecalis (MIC(50/90), 0.5/1 mg/L; 100% susceptible) the highest daptomycin MIC value was 2 mg/L; while among E. faecium (MIC(50/90), 2/4 mg/L; 100% susceptible) the highest MIC result was 4 mg/L. CONCLUSION: Daptomycin showed excellent in vitro activity against staphylococci and enterococci collected in European medical centers in 2005 and resistance to oxacillin, vancomycin or quinupristin/dalfopristin did not compromise its activity overall against these pathogens. Based on these results and those of previous publications, daptomycin appears to be an excellent therapeutic option for serious infections caused by oxacillin-resistant staphylococci and vancomycin-resistant enterococci in Europe
Supplemental Information 12: Alignment of various NADD enzyme orthologs
Background The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis. The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Methods Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli, two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. Results High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis. Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Discussion Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner
- …
