2,187 research outputs found
Dynamics of Viscoplastic Deformation in Amorphous Solids
We propose a dynamical theory of low-temperature shear deformation in
amorphous solids. Our analysis is based on molecular-dynamics simulations of a
two-dimensional, two-component noncrystalline system. These numerical
simulations reveal behavior typical of metallic glasses and other viscoplastic
materials, specifically, reversible elastic deformation at small applied
stresses, irreversible plastic deformation at larger stresses, a stress
threshold above which unbounded plastic flow occurs, and a strong dependence of
the state of the system on the history of past deformations. Microscopic
observations suggest that a dynamically complete description of the macroscopic
state of this deforming body requires specifying, in addition to stress and
strain, certain average features of a population of two-state shear
transformation zones. Our introduction of these new state variables into the
constitutive equations for this system is an extension of earlier models of
creep in metallic glasses. In the treatment presented here, we specialize to
temperatures far below the glass transition, and postulate that irreversible
motions are governed by local entropic fluctuations in the volumes of the
transformation zones. In most respects, our theory is in good quantitative
agreement with the rich variety of phenomena seen in the simulations.Comment: 16 pages, 9 figure
Phase transition in inelastic disks
This letter investigates the molecular dynamics of inelastic disks without
external forcing. By introducing a new observation frame with a rescaled time,
we observe the virtual steady states converted from asymptotic energy
dissipation processes. System behavior in the thermodynamic limit is carefully
investigated. It is found that a phase transition with symmetry breaking occurs
when the magnitude of dissipation is greater than a critical value.Comment: 9 pages, 6 figure
Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations
We study the formation process of an oxygen torus during the 12–15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfvén waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M ∼ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L = 3.7–4.5, respectively, on the morning side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at L∼3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout the plasma trough and remains at ∼1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase
The MOLDY short-range molecular dynamics package
We describe a parallelised version of the MOLDY molecular dynamics program.
This Fortran code is aimed at systems which may be described by short-range
potentials and specifically those which may be addressed with the embedded atom
method. This includes a wide range of transition metals and alloys. MOLDY
provides a range of options in terms of the molecular dynamics ensemble used
and the boundary conditions which may be applied. A number of standard
potentials are provided, and the modular structure of the code allows new
potentials to be added easily. The code is parallelised using OpenMP and can
therefore be run on shared memory systems, including modern multicore
processors. Particular attention is paid to the updates required in the main
force loop, where synchronisation is often required in OpenMP implementations
of molecular dynamics. We examine the performance of the parallel code in
detail and give some examples of applications to realistic problems, including
the dynamic compression of copper and carbon migration in an iron-carbon alloy
Nonholonomic Constraints with Fractional Derivatives
We consider the fractional generalization of nonholonomic constraints defined
by equations with fractional derivatives and provide some examples. The
corresponding equations of motion are derived using variational principle.Comment: 18 page
Viscosities of the Gay-Berne nematic liquid crystal
We present molecular dynamics simulation measurements of the viscosities of
the Gay-Berne phenomenological model of liquid crystals in the nematic and
isotropic phases. The temperature dependence of the rotational and shear
viscosities, including the nonmonotonic behavior of one shear viscosity are in
good agreement with experimental data. The bulk viscosities are significantly
larger than the shear viscosities, again in agreement with experiment.Comment: 11 pages, 4 Postscript figures, Revte
The potential energy landscape of a model glass former: thermodynamics, anharmonicities, and finite size effects
It is possible to formulate the thermodynamics of a glass forming system in
terms of the properties of inherent structures, which correspond to the minima
of the potential energy and build up the potential energy landscape in the
high-dimensional configuration space. In this work we quantitatively apply this
general approach to a simulated model glass-forming system. We systematically
vary the system size between N=20 and N=160. This analysis enables us to
determine for which temperature range the properties of the glass former are
governed by the regions of the configuration space, close to the inherent
structures. Furthermore, we obtain detailed information about the nature of
anharmonic contributions. Moreover, we can explain the presence of finite size
effects in terms of specific properties of the energy landscape. Finally,
determination of the total number of inherent structures for very small systems
enables us to estimate the Kauzmann temperature
Magnetic local time dependence of geomagnetic disturbances contributing to the AU and AL indices
The Auroral Electrojet (AE) indices, which are composed of four indices (AU, AL, AE, and AO), are calculated from the geomagnetic field data obtained at 12 geomagnetic observatories that are located in geomagnetic latitude (GMLAT) of 61.7°-70°. The indices have been widely used to study magnetic activity in the auroral zone. In the present study, we examine magnetic local time (MLT) dependence of geomagnetic field variations contributing to the AU and AL indices. We use 1-min geomagnetic field data obtained in 2003. It is found that both AU and AL indices have two ranges of MLT (AU: 15:00-22:00MLT, ~06:00 MLT; and AL: ~02:00 MLT, 09:00-12:00 MLT) contributing to the index during quiet periods and one MLT range (AU: 15:00-20:00MLT, and AL: 00:00-06:00 MLT) during disturbed periods. These results are interpreted in terms of various ionospheric current systems, such as, Sqp, Sq, and DP2
Phase-Space Metric for Non-Hamiltonian Systems
We consider an invariant skew-symmetric phase-space metric for
non-Hamiltonian systems. We say that the metric is an invariant if the metric
tensor field is an integral of motion. We derive the time-dependent
skew-symmetric phase-space metric that satisfies the Jacobi identity. The
example of non-Hamiltonian systems with linear friction term is considered.Comment: 12 page
Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion
To model a nematic emulsion consisting of a surfactant-coated water droplet
dispersed in a nematic host, we performed a molecular dynamics simulation of a
droplet immersed in a system of 2048 Gay-Berne ellipsoids in a nematic phase.
Strong radial anchoring at the surface of the droplet induced a Saturn ring
defect configuration, consistent with theoretical predictions for very small
droplets. A surface ring configuration was observed for lower radial anchoring
strengths, and a pair of point defects was found near the poles of the droplet
for tangential anchoring. We also simulated the falling ball experiment and
measured the drag force anisotropy, in the presence of strong radial anchoring
as well as zero anchoring strength.Comment: 17 pages, 15 figure
- …
