2,455 research outputs found
Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor
The nature of the pseudogap phase is a central problem in the quest to
understand high-Tc cuprate superconductors. A fundamental question is what
symmetries are broken when that phase sets in below a temperature T*. There is
evidence from both polarized neutron diffraction and polar Kerr effect
measurements that time- reversal symmetry is broken, but at temperatures that
differ significantly. Broken rotational symmetry was detected by both
resistivity and inelastic neutron scattering at low doping and by scanning
tunnelling spectroscopy at low temperature, but with no clear connection to T*.
Here we report the observation of a large in-plane anisotropy of the Nernst
effect in YBa2Cu3Oy that sets in precisely at T*, throughout the doping phase
diagram. We show that the CuO chains of the orthorhombic lattice are not
responsible for this anisotropy, which is therefore an intrinsic property of
the CuO2 planes. We conclude that the pseudogap phase is an electronic state
which strongly breaks four-fold rotational symmetry. This narrows the range of
possible states considerably, pointing to stripe or nematic orders.Comment: Published version. Journal reference and DOI adde
Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose condensate
A central goal in condensed matter and modern atomic physics is the
exploration of many-body quantum phases and the universal characteristics of
quantum phase transitions in so far as they differ from those established for
thermal phase transitions. Compared with condensed-matter systems, atomic gases
are more precisely constructed and also provide the unique opportunity to
explore quantum dynamics far from equilibrium. Here we identify a second-order
quantum phase transition in a gaseous spinor Bose-Einstein condensate, a
quantum fluid in which superfluidity and magnetism, both associated with
symmetry breaking, are simultaneously realized. Rb spinor condensates
were rapidly quenched across this transition to a ferromagnetic state and
probed using in-situ magnetization imaging to observe spontaneous symmetry
breaking through the formation of spin textures, ferromagnetic domains and
domain walls. The observation of topological defects produced by this symmetry
breaking, identified as polar-core spin-vortices containing non-zero spin
current but no net mass current, represents the first phase-sensitive in-situ
detection of vortices in a gaseous superfluid.Comment: 6 pages, 4 figure
Superconducting, Insulating, and Anomalous Metallic Regimes in a Gated Two-Dimensional Semiconductor-Superconductor Array
The superconductor-insulator transition in two dimensions has been widely
investigated as a paradigmatic quantum phase transition. The topic remains
controversial, however, because many experiments exhibit a metallic regime with
saturating low-temperature resistance, at odds with conventional theory. Here,
we explore this transition in a novel, highly controllable system, a
semiconductor heterostructure with epitaxial Al, patterned to form a regular
array of superconducting islands connected by a gateable quantum well. Spanning
nine orders of magnitude in resistance, the system exhibits regimes of
superconducting, metallic, and insulating behavior, along with signatures of
flux commensurability and vortex penetration. An in-plane magnetic field
eliminates the metallic regime, restoring the direct superconductor-insulator
transition, and improves scaling, while strongly altering the scaling exponent
Epigenetics as a mechanism driving polygenic clinical drug resistance
Aberrant methylation of CpG islands located at or near gene promoters is associated with inactivation of gene expression during tumour development. It is increasingly recognised that such epimutations may occur at a much higher frequency than gene mutation and therefore have a greater impact on selection of subpopulations of cells during tumour progression or acquisition of resistance to anticancer drugs. Although laboratory-based models of acquired resistance to anticancer agents tend to focus on specific genes or biochemical pathways, such 'one gene : one outcome' models may be an oversimplification of acquired resistance to treatment of cancer patients. Instead, clinical drug resistance may be due to changes in expression of a large number of genes that have a cumulative impact on chemosensitivity. Aberrant CpG island methylation of multiple genes occurring in a nonrandom manner during tumour development and during the acquisition of drug resistance provides a mechanism whereby expression of multiple genes could be affected simultaneously resulting in polygenic clinical drug resistance. If simultaneous epigenetic regulation of multiple genes is indeed a major driving force behind acquired resistance of patients' tumour to anticancer agents, this has important implications for biomarker studies of clinical outcome following chemotherapy and for clinical approaches designed to circumvent or modulate drug resistance
T-Bet and Eomes Regulate the Balance between the Effector/Central Memory T Cells versus Memory Stem Like T Cells
Memory T cells are composed of effector, central, and memory stem cells. Previous studies have implicated that both T-bet and Eomes are involved in the generation of effector and central memory CD8 T cells. The exact role of these transcription factors in shaping the memory T cell pool is not well understood, particularly with memory stem T cells. Here, we demonstrate that both T-bet or Eomes are required for elimination of established tumors by adoptively transferred CD8 T cells. We also examined the role of T-bet and Eomes in the generation of tumor-specific memory T cell subsets upon adoptive transfer. We showed that combined T-bet and Eomes deficiency resulted in a severe reduction in the number of effector/central memory T cells but an increase in the percentage of CD62LhighCD44low Sca-1+ T cells which were similar to the phenotype of memory stem T cells. Despite preserving large numbers of phenotypic memory stem T cells, the lack of both of T-bet and Eomes resulted in a profound defect in antitumor memory responses, suggesting T-bet and Eomes are crucial for the antitumor function of these memory T cells. Our study establishes that T-bet and Eomes cooperate to promote the phenotype of effector/central memory CD8 T cell versus that of memory stem like T cells. © 2013 Li et al
Critical change in the Fermi surface of iron arsenic superconductors at the onset of superconductivity
The phase diagram of a correlated material is the result of a complex
interplay between several degrees of freedom, providing a map of the material's
behavior. One can understand (and ultimately control) the material's ground
state by associating features and regions of the phase diagram, with specific
physical events or underlying quantum mechanical properties. The phase diagram
of the newly discovered iron arsenic high temperature superconductors is
particularly rich and interesting. In the AE(Fe1-xTx)2As2 class (AE being Ca,
Sr, Ba, T being transition metals), the simultaneous structural/magnetic phase
transition that occurs at elevated temperature in the undoped material, splits
and is suppressed by carrier doping, the suppression being complete around
optimal doping. A dome of superconductivity exists with apparent equal ease in
the orthorhombic / antiferromagnetic (AFM) state as well as in the tetragonal
state with no long range magnetic order. The question then is what determines
the critical doping at which superconductivity emerges, if the AFM order is
fully suppressed only at higher doping values. Here we report evidence from
angle resolved photoemission spectroscopy (ARPES) that critical changes in the
Fermi surface (FS) occur at the doping level that marks the onset of
superconductivity. The presence of the AFM order leads to a reconstruction of
the electronic structure, most significantly the appearance of the small hole
pockets at the Fermi level. These hole pockets vanish, i. e. undergo a Lifshitz
transition, at the onset of superconductivity. Superconductivity and magnetism
are competing states in the iron arsenic superconductors. In the presence of
the hole pockets superconductivity is fully suppressed, while in their absence
the two states can coexist.Comment: Updated version accepted in Nature Physic
Genetic determinants of co-accessible chromatin regions in activated T cells across humans.
Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
The urgent need to develop emergency EYE care in the UK:the way forward?
For two decades prior to 2004, a steady state existed of ~14 million general Accident and Emergency (A&E) annual attendances in England. This total has risen each year since, with 22.9 million attendances recorded in 2015/16 (https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2016/06/Monthly-AE-Report-December-16.pdf). Resultant pressure on A&E has received a great deal of public attention and extra resourcing with medical staff numbers rising 71% from 2002 to 2012
- …
