90 research outputs found

    Coordinated optimization of visual cortical maps (I) Symmetry-based analysis

    Get PDF
    In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of OP columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about an hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference.Comment: 90 pages, 16 figure

    Epigenetics as a mechanism driving polygenic clinical drug resistance

    Get PDF
    Aberrant methylation of CpG islands located at or near gene promoters is associated with inactivation of gene expression during tumour development. It is increasingly recognised that such epimutations may occur at a much higher frequency than gene mutation and therefore have a greater impact on selection of subpopulations of cells during tumour progression or acquisition of resistance to anticancer drugs. Although laboratory-based models of acquired resistance to anticancer agents tend to focus on specific genes or biochemical pathways, such 'one gene : one outcome' models may be an oversimplification of acquired resistance to treatment of cancer patients. Instead, clinical drug resistance may be due to changes in expression of a large number of genes that have a cumulative impact on chemosensitivity. Aberrant CpG island methylation of multiple genes occurring in a nonrandom manner during tumour development and during the acquisition of drug resistance provides a mechanism whereby expression of multiple genes could be affected simultaneously resulting in polygenic clinical drug resistance. If simultaneous epigenetic regulation of multiple genes is indeed a major driving force behind acquired resistance of patients' tumour to anticancer agents, this has important implications for biomarker studies of clinical outcome following chemotherapy and for clinical approaches designed to circumvent or modulate drug resistance

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335

    Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-term gene silencing throughout cell division is generally achieved by DNA methylation and other epigenetic processes. Aberrant DNA methylation is now widely recognized to be associated with cancer and other human diseases. Here we addressed the contribution of the multifunctional nuclear factor CTCF to the epigenetic regulation of the human <it>retinoblastoma </it>(<it>Rb</it>) gene promoter in different tumoral cell lines.</p> <p>Methods</p> <p>To assess the DNA methylation status of the <it>Rb </it>promoter, genomic DNA from stably transfected human erythroleukemic K562 cells expressing a <it>GFP </it>reporter transgene was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. Single- and multi-copy integrants with the CTCF binding site mutated were isolated and characterized by Southern blotting. Silenced transgenes were reactivated using 5-aza-2'-deoxycytidine and Trichostatin-A, and their expression was monitored by fluorescent cytometry. <it>Rb </it>gene expression and protein abundance were assessed by RT-PCR and Western blotting in three different glioma cell lines, and DNA methylation of the promoter region was determined by sodium bisulfite sequencing, together with CTCF dissociation and methyl-CpG-binding protein incorporation by chromatin immunoprecipitation assays.</p> <p>Results</p> <p>We found that the inability of CTCF to bind to the <it>Rb </it>promoter causes a dramatic loss of gene expression and a progressive gain of DNA methylation.</p> <p>Conclusions</p> <p>This study indicates that CTCF plays an important role in maintaining the <it>Rb </it>promoter in an optimal chromatin configuration. The absence of CTCF induces a rapid epigenetic silencing through a progressive gain of DNA methylation. Consequently, CTCF can now be seen as one of the epigenetic components that allows the proper configuration of tumor suppressor gene promoters. Its aberrant dissociation can then predispose key genes in cancer cells to acquire DNA methylation and epigenetic silencing.</p

    Systematic review and meta-analysis of Transurethral Needle Ablation in symptomatic Benign Prostatic Hyperplasia

    Get PDF
    BACKGROUND: Benign prostatic hyperplasia (BPH) constitutes a major clinical problem. Minimally invasive therapies for the treatment of symptomatic BPH include Transurethral Needle Ablation (TUNA), but it is unclear what impact this technique has on the disease and its role among other currently available therapeutic options. The objective of this study is to ascertain the efficacy and safety of TUNA in the treatment of BPH. METHODS: Systematic review of the literature until January 2005 and meta-analysis of clinical studies assessing TUNA in symptomatic BPH. Studies were critically appraised. Estimates of effect were calculated according to the random-effects model. RESULTS: 35 studies (9 comparative, 26 non-comparative) were included. Although evidence was limited by methodological issues, the analysis of relevant outcomes indicates that while TUNA significantly improves BPH parameters with respect to baseline, it does not reach the same level of efficacy as TURP in respect to all subjective and objective variables. Further, its efficacy declines in the long-term with a rate of secondary-treatment significantly higher than of TURP [OR: 7.44 (2.47, 22.43)]. Conversely, TUNA seems to be a relatively safe technique and shows a lower rate of complications than TURP [OR:0.14 (0.05, 0.14)] with differences being particularly noteworthy in terms of postoperative bleeding and sexual disorders. Likewise, TUNA has fewer anesthetic requirements and generates a shorter hospital stay than TURP [WMD: -1.9 days (-2.75, -1.05)]. Scarce data and lack of replication of comparisons hinder the assessment of TUNA vs. other local therapies. No comparisons with medical treatment were found. CONCLUSION: The body of evidence on which TUNA has been introduced into clinical practice is of only moderate-low quality. Available evidence suggest that TUNA is a relatively effective and safe technique that may eventually prove to have a role in selected patients with symptomatic BPH. TUNA significantly improves BPH parameters with respect to baseline values, but it does not reach the same level of efficacy and long-lasting success as TURP. On the other hand, TUNA seems to be superior to TURP in terms of associated morbidity, anesthetic requirements and length of hospital stay. With respect to the role of TUNA vis-à-vis other minimally invasive therapies, the results of this review indicate that there are insufficient data to define this with any degree of accuracy. Overall cost-effectiveness and the role of TUNA versus medical treatment need further evaluation

    A Postnatal Critical Period for Orientation Plasticity in the Cat Visual Cortex

    Get PDF
    Orientation selectivity of primary visual cortical neurons is an important requisite for shape perception. Although numerous studies have been previously devoted to a question of how orientation selectivity is established and elaborated in early life, how the susceptibility of orientation plasticity to visual experience changes in time remains unclear. In the present study, we showed a postnatal sensitive period profile for the modifiability of orientation selectivity in the visual cortex of kittens reared with head-mounted goggles for stable single-orientation exposure. When goggle rearing (GR) started at P16-P30, 2 weeks of GR induced a marked over-representation of the exposed orientation, and 2 more weeks of GR consolidated the altered orientation maps. GR that started later than P50, in turn, induced the under-representation of the exposed orientation. Orientation plasticity in the most sensitive period was markedly suppressed by cortical infusion of NMDAR antagonist. The present study reveals that the plasticity and consolidation of orientation selectivity in an early life are dynamically regulated in an experience-dependent manner

    Tuning of synapse number, structure and function in the cochlea.

    No full text
    Cochlear inner hair cells (IHCs) transmit acoustic information to spiral ganglion neurons through ribbon synapses. Here we have used morphological and physiological techniques to ask whether synaptic mechanisms differ along the tonotopic axis and within IHCs in the mouse cochlea. We show that the number of ribbon synapses per IHC peaks where the cochlea is most sensitive to sound. Exocytosis, measured as membrane capacitance changes, scaled with synapse number when comparing apical and midcochlear IHCs. Synapses were distributed in the subnuclear portion of IHCs. High-resolution imaging of IHC synapses provided insights into presynaptic Ca2+ channel clusters and Ca2+ signals, synaptic ribbons and postsynaptic glutamate receptor clusters and revealed subtle differences in their average properties along the tonotopic axis. However, we observed substantial variability for presynaptic Ca2+ signals, even within individual IHCs, providing a candidate presynaptic mechanism for the divergent dynamics of spiral ganglion neuron spiking

    Distinct DNA methylation epigenotypes in bladder cancer from different Chinese sub-populations and its implication in cancer detection using voided urine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bladder cancer is the sixth most common cancer in the world and the incidence is particularly high in southwestern Taiwan. Previous studies have identified several tumor-related genes that are hypermethylated in bladder cancer; however the DNA methylation profile of bladder cancer in Taiwan is not fully understood.</p> <p>Methods</p> <p>In this study, we compared the DNA methylation profile of multiple tumor suppressor genes (<it>APC</it>, <it>DAPK</it>, <it>E-cadherin</it>, <it>hMLH1</it>, <it>IRF8</it>, <it>p14</it>, <it>p15</it>, <it>RASSF1A</it>, <it>SFRP1 </it>and <it>SOCS-1</it>) in bladder cancer patients from different Chinese sub-populations including Taiwan (104 cases), Hong Kong (82 cases) and China (24 cases) by MSP. Two normal human urothelium were also included as control. To investigate the diagnostic potential of using DNA methylation in non-invasive detection of bladder cancer, degree of methylation of <it>DAPK</it>, <it>IRF8</it>, <it>p14</it>, <it>RASSF1A </it>and <it>SFRP1 </it>was also accessed by quantitative MSP in urine samples from thirty bladder cancer patients and nineteen non-cancer controls.</p> <p>Results</p> <p>There were distinct DNA methylation epigenotypes among the different sub-populations. Further, samples from Taiwan and China demonstrated a bimodal distribution suggesting that CpG island methylator phentotype (CIMP) is presented in bladder cancer. Moreover, the number of methylated genes in samples from Taiwan and Hong Kong were significantly correlated with histological grade (P < 0.01) and pathological stage (P < 0.01). Regarding the samples from Taiwan, methylation of <it>SFRP1</it>, <it>IRF8</it>, <it>APC </it>and <it>RASSF1A </it>were significantly associated with increased tumor grade, stage. Methylation of <it>RASSF1A </it>was associated with tumor recurrence. Patients with methylation of <it>APC </it>or <it>RASSF1A </it>were also significantly associated with shorter recurrence-free survival. For methylation detection in voided urine samples of cancer patients, the sensitivity and specificity of using any of the methylated genes (<it>IRF8</it>, <it>p14 </it>or <it>sFRP1</it>) by qMSP was 86.7% and 94.7%.</p> <p>Conclusions</p> <p>Our results indicate that there are distinct methylation epigenotypes among different Chinese sub-populations. These profiles demonstrate gradual increases with cancer progression. Finally, detection of gene methylation in voided urine with these distinct DNA methylation markers is more sensitive than urine cytology.</p

    Cholesterol Influences Voltage-Gated Calcium Channels and BK-Type Potassium Channels in Auditory Hair Cells

    Get PDF
    The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitabilityare unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD) on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs) are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type) potassiumcurrent by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (∼30%), ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology

    The Herpes Simplex Virus-1 Transactivator Infected Cell Protein-4 Drives VEGF-A Dependent Neovascularization

    Get PDF
    Herpes simplex virus-1 (HSV-1) causes lifelong infection affecting between 50 and 90% of the global population. In addition to causing dermal lesions, HSV-1 is a leading cause of blindness resulting from recurrent corneal infection. Corneal disease is characterized by loss of corneal immunologic privilege and extensive neovascularization driven by vascular endothelial growth factor-A (VEGF-A). In the current study, we identify HSV-1 infected cells as the dominant source of VEGF-A during acute infection, and VEGF-A transcription did not require TLR signaling or MAP kinase activation. Rather than being an innate response to the pathogen, VEGF-A transcription was directly activated by the HSV-1 encoded immediate early transcription factor, ICP4. ICP4 bound the proximal human VEGF-A promoter and was sufficient to promote transcription. Transcriptional activation also required cis GC-box elements common to the VEGF-A promoter and HSV-1 early genes. Our results suggest that the neovascularization characteristic of ocular HSV-1 disease is a direct result of HSV-1's major transcriptional regulator, ICP4, and similarities between the VEGF-A promoter and those of HSV-1 early genes
    corecore