20 research outputs found

    A fusion protein containing a lepidopteran-specific toxin from the South Indian red scorpion (Mesobuthus tamulus) and snowdrop lectin shows oral toxicity to target insects

    Get PDF
    Background Despite evidence suggesting a role in plant defence, the use of plant lectins in crop protection has been hindered by their low and species-specific insecticidal activity. Snowdrop lectin (Galanthus nivalis agglutinin; GNA) is transported to the haemolymph of insects after oral ingestion, and can be used as a basis for novel insecticides. Recombinant proteins containing GNA expressed as a fusion with a peptide or protein, normally only toxic when injected into the insect haemolymph, have the potential to show oral toxicity as a result of GNA-mediated uptake. Results A gene encoding a toxin, ButaIT, from the red scorpion (Mesobuthus tamulus) was synthesised and assembled into expression constructs. One construct contained ButaIT alone, whereas the other contained ButaIT fused N-terminally to a GNA polypeptide (ButaIT/GNA). Both recombinant proteins were produced using the yeast Pichia pastoris as an expression host, and purified. Recombinant ButaIT and ButaIT/GNA were acutely toxic when injected into larvae of tomato moth (Lacanobia oleracea), causing slow paralysis, leading to mortality or decreased growth. ButaIT/GNA was chronically toxic when fed to L. oleracea larvae, causing decreased survival and weight gain under conditions where GNA alone was effectively non-toxic. Intact ButaIT/GNA was detected in larval haemolymph from insects fed the fusion protein orally, demonstrating transport of the linked polypeptide across the gut. Proteolysis of the fusion protein was also observed. ButaIT/GNA was significantly more toxic that GNA alone when fed to the homopteran Nilaparvata lugens (rice brown planthopper) in liquid artificial diet. Conclusion The ButaIT/GNA recombinant fusion protein is toxic to lepidopteran larvae both when injected and when fed orally, showing the utility of GNA as a carrier to transport potentially toxic peptides and proteins across the insect gut. Although ButaIT has been claimed to be lepidopteran-specific, the fusion protein has more wide-ranging insecticidal activity. Fusion proteins based on plant lectins have potential applications in crop protection, both as exogenously applied treatments and as endogenous products in transgenic plants

    The emergence of azithromycin-resistant Salmonella Typhi in Nepal

    No full text
    Background Typhoid fever remains a significant cause of morbidity and mortality in Asia and Africa. The emergence of azithromycin resistance in South Asia is concerning, as azithromycin is one of the last effective oral drugs for treating typhoid. Objectives To describe the molecular mechanism and phylogenetics of azithromycin-resistant (AzithR) Salmonella Typhi isolates from Patan Hospital, Kathmandu, Nepal. Methods Whole-genome sequences of three AzithR S. Typhi isolates (MIC >256 mg/L) were analysed and compared with a global collection to investigate the azithromycin resistance mechanism and phylogenetic structure. Clinical information is reported for one of the three patients infected with AzithR S. Typhi. Results The three AzithR isolates belonged to the H58 lineage and were genetically identical; they were distantly related to contemporaneous S. Typhi from Nepal and AzithR S. Typhi recently described in Bangladesh. Azithromycin resistance was mediated by a non-synonymous mutation in the acrB gene (R717L). The three AzithR isolates showed reduced susceptibility to ciprofloxacin (double mutation in the gyrA: S83F and D87G), and were susceptible to ampicillin, chloramphenicol and co-trimoxazole. Clinical information from one patient suggested non-response to azithromycin treatment. Conclusions This is the first molecular description of AzithR S. Typhi in Nepal. These organisms showed no phylogenetic link to AzithR S. Typhi in Bangladesh. Our data suggest that increasing use of azithromycin may pose a strong selective pressure driving the emergence of AzithR S. Typhi in South Asia. Further investigations are needed to evaluate treatment responses to azithromycin, predict evolutionary trajectories, and track the transmission of these organisms

    Optimising expression of the recombinant fusion protein biopesticide ω-hexatoxin-Hv1a /GNA in Pichia pastoris: Sequence modifications and a simple method for the generation of multi-copy strains

    Get PDF
    Production of recombinant protein bio-insecticides on a commercial scale can only be cost effective if host strains with very high expression levels are available. A recombinant fusion protein containing an arthropod toxin, ω-hexatoxin-Hv1a, (from funnel web spider Hadronyche versuta) linked to snowdrop lectin (Galanthus nivalis agglutinin; GNA) is an effective oral insecticide and candidate biopesticide. However, the fusion protein was vulnerable to proteolysis during production in the yeast Pichia pastoris. To prevent proteolysis, the Hv1a/GNA fusion expression construct was modified by site-directed mutagenesis to remove a potential Kex2 cleavage site at the C-terminus of the Hv1a peptide. To obtain a high expressing clone of P. pastoris to produce recombinant Hv1a/GNA, a straightforward method was used to produce multi-copy expression plasmids, which does not require multiple integrations to give clones of P. pastoris containing high copy numbers of the introduced gene. Removal of the Kex2 site resulted in increased levels of intact fusion protein expressed in wild-type P. pastoris strains, improving levels of intact recombinant protein recoverable. Incorporation of a C-terminal (His)6 tag enabled single step purification of the fusion protein. These modifications did not affect the insecticidal activity of the recombinant toxin towards lepidopteran larvae. Introduction of multiple expression cassettes increased the amount of secreted recombinant fusion protein in a laboratory scale fermentation by almost tenfold on a per litre of culture basis. Simple modifications in the expression construct can be advantageous for the generation of high expressing P. pastoris strains for production of a recombinant protein, without altering its functional properties

    Reversible and Irreversible Labelling of H1- and H2-Receptors Using Novel [125I]Probes

    No full text
    International audienceWe have recently designed the first 125I-labelled probes specific for the histamine H1 and H2 receptors. These reversible and irreversible antagonists are among the most potent H1 and H2 ligands and have enabled investigations into the biochemical and pharmacological properties of these two receptors. In various brain animal species, the ligand binding peptide of the H1 and H2 receptors, as determined by photoaffinity labeling, resides within 56-59 kDa peptides. In contrast, in guinea pig heart, the ligand binding domain of the H1 receptor is characterized by a higher molecular weight (68 kDa), suggesting the presence of an isoform of this protein, clearly differentiable by this biochemical property but not by its pharmacology. The reversible 125I-probes allowed us to extend the pharmacology of these receptors in several biological preparations and in human brain, and to establish their interaction with G-proteins. A detailed mapping of H1 and, for the first time, of H2 receptors, has been achieved in guinea pig brain, establishing their presence in almost all brain areas. These experiments show that there is no correlation between the density of H2 receptor and the activity of adenylate cyclase sensitive to histamine suggesting a molecular heterogeneity of this receptor
    corecore