231 research outputs found

    Solving ill-posed bilevel programs

    No full text
    This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to obtain local optimal solutions for the original optimistic problem by this process. Considering the intrinsic non-convexity of bilevel programs, computing local optimal solutions is the best one can hope to get in most cases. To achieve this goal, we start by establishing an equivalence between the original optimistic problem an a certain set-valued optimization problem. Next, we develop optimality conditions for the latter problem and show that they generalize all the results currently known in the literature on optimistic bilevel optimization. Our approach is then extended to multiobjective bilevel optimization, and completely new results are derived for problems with vector-valued upper- and lower-level objective functions. Numerical implementations of the results of this paper are provided on some examples, in order to demonstrate how the original optimistic problem can be solved in practice, by means of a special set-valued optimization problem

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Self-Transforming Configuration Based on Atmospheric-Adaptive Materials for Solid Oxide Cells

    Get PDF
    Solid oxide cells (SOC) with a symmetrical configuration have been focused due to the practical benefits of such configurations, such as minimized compatibility issues, a simple fabrication process and reduced cost compared to SOCs with the asymmetrical configuration. However, the performance of SOCs using a single type of electrode material (symmetrical configuration) is lower than the performance of those using the dissimilar electrode materials (asymmetrical configuration). Therefore, to achieve a high-performance cell, we design a 'self-transforming cell' with the asymmetric configuration using only materials of the single type, one based on atmospheric adaptive materials. Atmospheric-adaptive perovskite Pr0.5Ba0.5Mn0.85Co0.15O3-delta (PBMCo) was used for the so-called self-transforming cell electrodes, which changed to layered perovskite and metal in the fuel atmosphere and retained its original structure in the air atmosphere. In fuel cell mods, the self-transforming cell shows excellent electrochemical performance of 1.10Wcm(-2) at 800 degrees C and good stability for 100 h without any catalyst. In electrolysis mode, the moderate current densities of -0.42A cm(-2) for 3 vol.% H2O and -0.62 A cm(-2) for 10 vol.% H2O, respectively, were observed at a cell voltage of 1.3V at 800 degrees C. In the reversible cycling test, the transforming cell maintains the constant voltages for 30 h at +/- 0.2A cm(-2) under 10 vol. % H2O

    Vitamin D prevents endothelial progenitor cell dysfunction induced by sera from women with preeclampsia or conditioned media from hypoxic placenta

    Get PDF
    Context: Placenta-derived circulating factors contribute to the maternal endothelial dysfunction underlying preeclampsia. Endothelial colony forming cells (ECFC), a sub-population of endothelial progenitor cells (EPCs), are thought to be involved in vasculogenesis and endothelial repair. Low vitamin D concentrations are associated with an increased risk for preeclampsia. Objective: We hypothesized that the function of human fetal ECFCs in culture would be suppressed by exposure to preeclampsia-related factors-preeclampsia serum or hypoxic placental conditioned medium- in a fashion reversed by vitamin D. Design, Setting, Patients: ECFCs were isolated from cord blood of uncomplicated pregnancies and expanded in culture. Uncomplicated pregnancy villous placenta in explant culture were exposed to either 2% (hypoxic), 8% (normoxic) or 21% (hyperoxic) O2 for 48 h, after which the conditioned media (CM) was collected. Outcome Measures: ECFC tubule formation (Matrigel assay) and migration were examined in the presence of either maternal serum from preeclampsia cases or uncomplicated pregnancy controls, or pooled CM, in the presence or absence of 1,25(OH)2 vitamin D3. Results: 1,25(OH)2 vitamin D3 reversed the adverse effects of preeclampsia serum or CM from hypoxic placenta on ECFCs capillary-tube formation and migration. Silencing of VDR expression by VDR siRNA, VDR blockade, or VEGF pathway blockade reduced ECFC functional abilities. Effects of VDR or VEGF blockade were partially prevented by vitamin D. Conclusion: Vitamin D promotes the capillary-like tubule formation and migration of ECFCs in culture, minimizing the negative effects of exposure to preeclampsia-related factors. Further evaluation of the role of vitamin D in ECFC regulation and preeclampsia is warranted. © 2014 Brodowski et al

    Interatomic Potentials for NiZr alloys from experimental and ab initio calculations

    Get PDF
    We applied an approach to the development of many-body interatomic potentials for NiZr alloys, gaining an improved accuracy and reliability. The functional form of the potential is that of the embedded method, but it has been improved as follows. (1) The database used for the development of the potential includes both experimental data and a large set of energies of different structures of the alloys generated by Fab initio calculations. (2) The optimum parametrization of the potential for the given database is obtained by fitting. Using this approach we developed reliable interatomic potentials for Ni and Zr. The potential accurately reproduces basic equilibrium properties of the alloys

    A Human-Centric Metaverse Enabled by Brain-Computer Interface: A Survey

    Get PDF

    Theoretical study of [4+2] cycloadditions of some 6- and 5-member ring aromatic compounds on the Si(001)-2 x 1 surface: correlation between binding energy and resonance energy

    Get PDF
    By means of first-principles density functional cluster model calculations, we demonstrate that the binding energies of the [4 + 2] cycloaddition products of the 6- and 5-member ring aromatic compounds on the Si( 001) surface depend strongly on their resonance energies

    Single-cell analysis tools for drug discovery and development

    Get PDF
    The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed

    Copper cluster structural stablity and energetic - Calculations and simulations

    Get PDF
    Equilibrium geometries and electronic properties of Cu-n (n = 2,3,4,6) cluster are determined via DFT calculations. We construct potential function with parameters fitted to ab initio potential energy surfaces, and use a global minima "basin-hopping" algorithm to obtain minimum-energy structures of Cu clusters for n =13 similar to 56. The results are in good agreement with experiments and other calculations
    corecore