607 research outputs found
Driven transverse shear waves in a strongly coupled dusty plasma
The linear dispersion properties of transverse shear waves in a strongly
coupled dusty plasma are experimentally studied by exciting them in a
controlled manner with a variable frequency external source. The dusty plasma
is maintained in the strongly coupled fluid regime with (1 < Gamma << Gamma_c)
where Gamma is the Coulomb coupling parameter and Gamma_c is the
crystallization limit. A dispersion relation for the transverse waves is
experimentally obtained over a frequency range of 0.1 Hz to 2 Hz and found to
show good agreement with viscoelastic theoretical results.Comment: The manuscripts contains five pages and 6 figure
Dispersion Relations for Thermally Excited Waves in Plasma Crystals
Thermally excited waves in a Plasma crystal were numerically simulated using
a Box_Tree code. The code is a Barnes_Hut tree code proven effective in
modeling systems composed of large numbers of particles. Interaction between
individual particles was assumed to conform to a Yukawa potential. Particle
charge, mass, density, Debye length and output data intervals are all
adjustable parameters in the code. Employing a Fourier transform on the output
data, dispersion relations for both longitudinal and transverse wave modes were
determined. These were compared with the dispersion relations obtained from
experiment as well as a theory based on a harmonic approximation to the
potential. They were found to agree over a range of 0.9<k<5, where k is the
shielding parameter, defined by the ratio between interparticle distance a and
dust Debye length lD. This is an improvement over experimental data as current
experiments can only verify the theory up to k = 1.5.Comment: 8 pages, Presented at COSPAR '0
Tau phosphorylation in Alzheimer's disease: pathogen or protector?
During the past decade, hypotheses concerning the pathogenesis of most neurodegenerative diseases have been dominated by the notion that the aggregation of specific proteins and subsequent formation of cytoplasmic and extracellular lesions represent a harbinger of neuronal dysfunction and death. As such, in Alzheimer's disease, phosphorylated tau protein, the major component of neurofibrillary tangles, is considered a central mediator of disease pathogenesis. We challenge this classic notion by proposing that tau phosphorylation represents a compensatory response mounted by neurons against oxidative stress and serves a protective function. This novel concept, which can also be applied to protein aggregates in other neurodegenerative diseases, opens a new window of knowledge with broad implications for both the understanding of mechanisms underlying disease pathophysiology and the design of new therapeutic strategies.http://www.sciencedirect.com/science/article/B6W7J-4FNNC51-2/1/3fd57243f3b01d6654fbf488fd3d00a
Increased levels of RNA oxidation enhance the reversion frequency in aging pro-apoptotic yeast mutants
Despite recent advances in understanding the complexity of RNA processes, regulation of the metabolism of oxidized cellular RNAs and the mechanisms through which oxidized ribonucleotides affect mRNA translation, and consequently cell viability, are not well characterized. We show here that the level of oxidized RNAs is markedly increased in a yeast decapping Kllsm4Δ1 mutant, which accumulates mRNAs, ages much faster that the wild type strain and undergoes regulated-cell-death. We also found that in Kllsm4Δ1 cells the mutation rate increases during chronological life span indicating that the capacity to han- dle oxidized RNAs in yeast declines with aging. Lowering intracellular ROS levels by antioxidants recovers the wild- type phenotype of mutant cells, including reduced amount of oxidized RNAs and lower mutation rate. Since mRNA oxidation was reported to occur in different neurodegen- erative diseases, decapping-deficient cells may represent a useful tool for deciphering molecular mechanisms of cell response to such conditions, providing new insights into RNA modification-based pathogenesis
BACE1 activity impairs neuronal glucose oxidation:rescue by beta-hydroxybutyrate and lipoic acid
Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer's disease (AD) pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y) cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD
Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85
Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for further metabolism of cellodextrins to glucose in the periplasmic space and inner cytoplasmic membrane
Oxidative Damage to RNA in Neurodegenerative Diseases
Since 1999, oxidative damage to RNA molecules has been described in several neurological diseases including Alzheimer's disease, Parkinson's disease, Down syndrome, dementia with Lewy bodies, prion disease, subacute sclerosing panencephalitis, and xeroderma pigmentosum. An early involvement of RNA oxidation of vulnerable neuronal population in the neurodegenerative diseases has been demonstrated, which is strongly supported by a recent observation of increased RNA oxidation in brains of subjects with mild cognitive impairment. Until recently, little is known about consequences and cellular handling of the RNA damage. However, increasing body of evidence suggests detrimental effects of the RNA damage in protein synthesis and the existence of several coping mechanisms including direct repair and avoiding the incorporation of the damaged ribonucleotides into translational machinery. Further investigations toward understanding of the consequences and cellular handling mechanisms of the oxidative RNA damage may provide significant insights into the pathogenesis and therapeutic strategies of the neurodegenerative diseases
Messenger RNA Oxidation Occurs Early in Disease Pathogenesis and Promotes Motor Neuron Degeneration in ALS
BACKGROUND: Accumulating evidence indicates that RNA oxidation is involved in a wide variety of neurological diseases and may be associated with neuronal deterioration during the process of neurodegeneration. However, previous studies were done in postmortem tissues or cultured neurons. Here, we used transgenic mice to demonstrate the role of RNA oxidation in the process of neurodegeneration. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that messenger RNA (mRNA) oxidation is a common feature in amyotrophic lateral sclerosis (ALS) patients as well as in many different transgenic mice expressing familial ALS-linked mutant copper-zinc superoxide dismutase (SOD1). In mutant SOD1 mice, increased mRNA oxidation primarily occurs in the motor neurons and oligodendrocytes of the spinal cord at an early, pre-symptomatic stage. Identification of oxidized mRNA species revealed that some species are more vulnerable to oxidative damage, and importantly, many oxidized mRNA species have been implicated in the pathogenesis of ALS. Oxidative modification of mRNA causes reduced protein expression. Reduced mRNA oxidation by vitamin E restores protein expression and partially protects motor neurons. CONCLUSION/SIGNIFICANCE: These findings suggest that mRNA oxidation is an early event associated with motor neuron deterioration in ALS, and may be also a common early event preceding neuron degeneration in other neurological diseases
Sulforaphane Potentiates RNA Damage Induced by Different Xenobiotics
Background: The isothiocyanate sulforaphane (SFN) possesses interesting anticancer activities. However, recent studies reported that SFN promotes the formation of reactive oxygen species (ROS) as well as DNA breakage. Methodology/Principal Findings: We investigated whether SFN is able to damage RNA, whose loss of integrity was demonstrated in different chronic diseases. Considering the ability of SFN to protect from genotoxicity, we also examined whether SFN is able to protect from RNA damage induced by different chemicals (doxorubicin, spermine, S-nitroso-Nacetylpenicillamine, H2O2). We observed that SFN was devoid of either RNA damaging and RNA protective activity in human leukemic cells. It was able to potentiate the RNA damage by doxorubicin and spermine. In the first case, the effect was attributable to its ability of modulating the bioreductive activation of doxorubicin. For spermine, the effects were mainly due to its modulation of ROS levels produced by spermine metabolism. As to the cytotoxic relevance of the RNA damage, we found that the treatment of cells with a mixture of spermine or doxorubicin plus SFN increased their proapoptotic potential. Thus it is conceivable that the presence of RNA damage might concur to the overall toxic response induced by a chemical agent in targeted cells. Conclusions/Significance: Since RNA is emerging as a potential target for anticancer drugs, its ability to enhance spermineand doxorubicin-induced RNA damage and cytotoxicity could represent an additional mechanism for the potentiatin
Synthesis, base pairing properties and trans-lesion synthesis by reverse transcriptases of oligoribonucleotides containing the oxidatively damaged base 5-hydroxycytidine
The synthesis of a caged RNA phosphoramidite building block containing the oxidatively damaged base 5-hydroxycytidine (5-HOrC) has been accomplished. To determine the effect of this highly mutagenic lesion on complementary base recognition and coding properties, this building block was incorporated into a 12-mer oligoribonucleotide for Tm and CD measurements and a 31-mer template strand for primer extension experiments with HIV-, AMV- and MMLV-reverse transcriptase (RT). In UV-melting experiments, we find an unusual biphasic transition with two distinct Tm's when 5-HOrC is paired against a DNA or RNA complement with the base guanine in opposing position. The higher Tm closely matches that of a C-G base pair while the lower is close to that of a C-A mismatch. In single nucleotide extension reactions, we find substantial misincorporation of dAMP and to a lesser extent dTMP, with dAMP almost equaling that of the parent dGMP in the case of HIV-RT. A working hypothesis for the biphasic melting transition does not invoke tautomeric variability of 5-HOrC but rather local structural perturbations of the base pair at low temperature induced by interactions of the 5-HO group with the phosphate backbone. The properties of this RNA damage is discussed in the context of its putative biological function
- …
