963 research outputs found

    Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements

    Get PDF
    Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focused ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples

    Second chances: Investigating athletes’ experiences of talent transfer

    Get PDF
    Talent transfer initiatives seek to transfer talented, mature individuals from one sport to another. Unfortunately talent transfer initiatives seem to lack an evidence-based direction and a rigorous exploration of the mechanisms underpinning the approach. The purpose of this exploratory study was to identify the factors which successfully transferring athletes cite as facilitative of talent transfer. In contrast to the anthropometric and performance variables that underpin current talent transfer initiatives, participants identified a range of psychobehavioral and environmental factors as key to successful transfer. We argue that further research into the mechanisms of talent transfer is needed in order to provide a strong evidence base for the methodologies employed in these initiatives

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Parental transfer of the antimicrobial protein LBP/BPI protects Biomphalaria glabrata eggs against oomycete infections

    Get PDF
    Copyright: © 2013 Baron et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was funded by ANR (ANR-07-BLAN-0214 and ANR-12-EMMA-00O7-01), CNRS and INRA. PvW was financially supported by the BBSRC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser

    Full text link
    Gisbert Winnewisser's astronomical career was practically coextensive with the whole development of molecular radio astronomy. Here I would like to pick out a few of his many contributions, which I, personally, find particularly interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter Astronomy Group. To appear in the Proceedings of the 4th Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies" eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer: Berlin

    A circadian based inflammatory response – implications for respiratory disease and treatment

    Full text link
    Circadian clocks regulate the daily timing of many of our physiological, metabolic and biochemical functions. The immune system also displays circadian oscillations in immune cell count, synthesis and cytokine release, clock gene expression in cells and organs of the immune system as well as clock-controlled genes that regulate immune function. Circadian disruption leads to dysregulation of immune responses and inflammation which can further disrupt circadian rhythms. The response of organisms to immune challenges, such as allergic reactions also vary depending on time of the day, which can lead to detrimental responses particularly during the rest and early active periods. This review evaluates what is currently known in terms of circadian biology of immune response and the cross-talk between circadian and immune system. We discuss the circadian pattern of three respiratory-related inflammatory diseases, chronic obstructive pulmonary disease, allergic rhinitis and asthma. Increasing our knowledge on circadian patterns of immune responses and developing chronotherapeutic studies in inflammatory diseases with strong circadian patterns will lead to preventive measures as well as improved therapies focussing on the circadian rhythms of symptoms and the daily variation of the patients’ responses to medication

    From 'trading zones' to 'buffer zones': Art and metaphor in the communication of psychiatric genetics to publics

    Get PDF
    Psychiatric genetics has a difficult relationship with the public given its unshakeable connection to eugenics. Drawing from a five-year public engagement programme that emerged from an internationally renowned psychiatric genetics centre, we propose the concept of the Buffer Zone to consider how an exchange of viewpoints between groups of people – including psychiatric geneticists and lay publics - who are often uneasy in one another’s company can be facilitated through the use of art and metaphor. The artwork at the exhibitions provided the necessary socio-cultural context for scientific endeavours, whilst also enabled public groups to be part of, and remain in, the conversation. Crucial to stress is that this mitigation was not to protect the science; it was to protect the discussion

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography

    Get PDF
    The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals (Helliwell, 1984). Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to the diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. A possible mechanism to account for these observations is proposed
    corecore