811 research outputs found

    Modélisation physique de l'interaction entre obstacles et avalanches de neige poudreuse

    Get PDF
    International audienceIn order to better understand the interaction between powder snow avalanches and defence structures, we carried out physical experiments on small-scale models. The powder snow avalanche was simulated by a heavy salt solution in a water tank. Quasi two-dimensional and three-dimensional experiments were carried out with different catching dam heights. For the reference avalanche, the velocity just behind the nose in the head was greater than the front velocity. For the 2-D configuration, the ratio Umax/Ufront was as high as 1.6, but it depends on the height. For the 3-D configuration, this ratio differed slightly and was even greater (up to 1.8). The vertical velocity rose to 106% of the front velocity for the 3-D simulation and 74% for the 2-D simulation. The reduction in front velocity due to the presence of dams was an increasing function of the dam height. But this reduction depended on topography: dams were more effective on an open slope avalanche (3-D configuration). The ratio Umax/Ufront was an increasing function of the dam's height and reached a value of 1.9. The obstacle led to a reduction in vertical velocity downstream of the vortex zone

    Barrières à neige en pente : modélisation physique dans la soufflerie climatique du CSTB à forte vitesse de vent

    No full text
    International audienceIn order to determine the effect of steep slopes on snowdrift generated by snow fences, we have conducted physical modeling experiments in the CSTB (Centre Scientifique et Technique du Bâtiment) cold wind tunnel as part of the European project "Access to Large Facilities". After an overview of previous studies and an accurate description of the drifting snow process inside the experimental chamber, we present the main results obtained. (1) On flat areas, even for high wind speed, the acknowledged results for moderate wind are still valid: the porous snow fence (50%) is the most efficacious and the bottom gap increases the efficacy of the dense snow fence. (2) The steeper the slope is, the less effective all tested snow fences are. Their effectiveness decreases considerably: the snow catch is approximately divided by two for a slope of 10°. (3) Contrary to flat areas, on steep slopes, the "efficacy" is greater for a dense snow fence

    The calibration of an avalanche mathematical model using field data

    No full text
    International audienceThe experience of calibrating Eglit's avalanche model using data about the avalanche travel distance lengths and velocity data from the Zailiyskiy Alatau range (Kazakhstan) is discussed. Empirical equations are proposed that describe the dependence of the friction coefficients on the avalanche volume and type

    Effect of unsteady wind on drifting snow: first investigations

    Get PDF
    Wind is not always a steady flow. It can oscillate, producing blasts. However, most of the current numerical models of drifting snow are constrained by one major assumption: forcing winds are steady and uniform. Moreover, very few studies have been done to verify this hypothesis, because of the lack of available instrumentation and measurement difficulties. Therefore, too little is known about the possible role of wind gust in drifting snow. In order to better understand the effect of unsteady winds, we have performed both experiments at the climatic wind tunnel at the CSTB (Centre Scientifique et Technique des Bâtiments) in Nantes, France, and in situ experiments on our experimental high-altitude site, at the Lac Blanc Pass. These experiments were carried out collaboratively with Cemagref (France), Météo-France, and the IFENA (Switzerland). Through the wind tunnel experiments, we found that drifting snow is in a state of permanent disequilibrium in the presence of fluctuating airflows. In addition, the in situ experiments show that the largest drifting snow episodes appear during periods of roughly constant strong wind, whereas a short but strong blast does not produce significant drifting snow.&nbsp;</p> <p style='line-height: 20px;'><b>Key words.</b> Drifting snow, blowing snow, gust, blast, acoustic senso

    Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures

    Get PDF
    An experimental investigation with dry granular flows passing over an obstacle down a rough inclined channel has been performed. The aim is to improve our understanding of the interaction between dense snow avalanches and defence structures. Specific attention was directed to the study of the zone of influence upstream from the obstacle, linked to the formation of a dead zone. The dead zone length <i>L</i> was systematically measured as a function of the obstacle height <i>H</i> and the channel inclination <i>&#x03B8;</i>, for several discharges. In a whole range of channel inclinations, all the data are shown to collapse into a single curve when properly scaled. The scaling is based on the introduction of a theoretical deposit length (depending on <i>H</i>, <i>&#x03B8;</i> and the internal friction angle of the material, <i>&#x03C6;</i>) and a Froude number of the flow depending on the obstacle height

    Surface oscillations in channeled snow flows

    Full text link
    An experimental device has been built to measure velocity profiles and friction laws in channeled snow flows. The measurements show that the velocity depends linearly on the vertical position in the flow and that the friction coefficient is a first-order polynomial in velocity (u) and thickness (h) of the flow. In all flows, oscillations on the surface of the flow were observed throughout the channel and measured at the location of the probes. The experimental results are confronted with a shallow water approach. Using a Saint-Venant modeling, we show that the flow is effectively uniform in the streamwise direction at the measurement location. We show that the surface oscillations produced by the Archimedes's screw at the top of the channel persist throughout the whole length of the channel and are the source of the measured oscillations. This last result provides good validation of the description of such channeled snow flows by a Saint-Venant modeling

    Lac Blanc Pass: a natural wind-tunnel for studying drifting snow at 2700ma.s.l

    No full text
    International audienceThe investigation of the spatial variability of snow depth in high alpine areas is an important topic in snow hydrology, glacier and avalanche research and the transport of snow by wind is an important process for the distribution of snow in mountainous regions. That's why, for 25 years IRSTEA (previously Cemagref) and Météo France (Centre for the Study of Snow) have joined together in studying drifting snow at Col du Lac Blanc 2700 m a.s.l. near the Alpe d'Huez ski resort in the French Alps. Initially, the site was mainly equipped with conventional meteorological stations and a network of snow poles, in order to test numerical models of drifting snow Sytron (CEN) and NEMO (Cemagref). These models are complementary in terms of spatial and temporal scales: outputs of Sytron model will form the inputs of NEMO model. Then new sensors and technologies appeared which allow to develop new knowledge dealing with thresholds velocity according to morphological features of snow grains, snow flux profiles including parameters such as fall velocity and Schmidt number, histograms of particle widths, aerodynamic roughness, gust factors. More recently, the coupled snowpack/ atmosphere model Meso-NH/Crocus has been evaluated at the experimental site. At the same time, some tested sensors have been deployed in Adelie Land in Antarctica, where blowing snow accounts for a major component of the surface mass balance. Japanese and Austrian research teams have been accomodated at Lac Blanc Pass and new foreign teams are welcome. Initial observations continue. That's why Lac Blanc Pass is also a climatological reference for 25 years at 2700 m. Data are available

    Dense flows of cohesive granular materials

    Get PDF
    International audienceUsing molecular dynamic simulations, we investigate the characteristics of dense flows of model cohesive grains. We describe their rheological behavior and its origin at the scale of the grains and of their organization. Homogeneous plane shear flows give access to the constitutive law of cohesive grains which can be expressed by a simple friction law similar to the case of cohesionless grains, but intergranular cohesive forces strongly enhance the resistance to the shear. Then we show the consequence on flows down a slope: a plugged region develops at the free surface where the cohesion intensity is the strongest. Moreover, we measure various indicators of the microstructure within flows which evidence the aggregation of grains due to cohesion and we analyze the properties of the contact network (force distributions and anisotropy). This provides new insights into the interplay between the local contact law, the microstructure and the macroscopic behavior of cohesive grains

    Optimal design under uncertainty of a passive defense structure against snow avalanches: from a general Bayesian framework to a simple analytical model

    Get PDF
    For snow avalanches, passive defense structures are generally designed by considering high return period events. In this paper, taking inspiration from other natural hazards, an alternative method based on the maximization of the economic benefit of the defense structure is proposed. A general Bayesian framework is described first. Special attention is given to the problem of taking the poor local information into account in the decision-making process. Therefore, simplifying assumptions are made. The avalanche hazard is represented by a Peak Over Threshold (POT) model. The influence of the dam is quantified in terms of runout distance reduction with a simple relation derived from small-scale experiments using granular media. The costs corresponding to dam construction and the damage to the element at risk are roughly evaluated for each dam height-hazard value pair, with damage evaluation corresponding to the maximal expected loss. Both the classical and the Bayesian risk functions can then be computed analytically. The results are illustrated with a case study from the French avalanche database. A sensitivity analysis is performed and modelling assumptions are discussed in addition to possible further developments

    Recent changes in avalanche activity in the French Alps and their links with climatic drivers: an overview

    No full text
    [Departement_IRSTEA]Eaux [TR1_IRSTEA]RIVAGEInternational audienceThis paper synthetizes our ongoing work on relations between natural avalanche activity and climate change in the French Alps and subregions. Firm results mainly concern occurrences, runout altitudes and high return period avalanches on long time scales (averages over “full” winters and winter-spring sub-seasons) since ~1950. Work in progress concerns extrapolation under future climate, shorter time scales (avalanche cycles), and more generally risk assessment under unstationarity. The strength and interest of the approach rely on the exceptional quality/quantity of avalanche records and snow and weather covariates available/used and on the development of specific statistical treatment methods
    corecore