1,839 research outputs found
The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes.
Evenly spaced nucleosomes directly correlate with condensed chromatin and gene silencing. The ATP-dependent chromatin assembly factor (ACF) forms such structures in vitro and is required for silencing in vivo. ACF generates and maintains nucleosome spacing by constantly moving a nucleosome towards the longer flanking DNA faster than the shorter flanking DNA. How the enzyme rapidly moves back and forth between both sides of a nucleosome to accomplish bidirectional movement is unknown. Here we show that nucleosome movement depends cooperatively on two ACF molecules, indicating that ACF functions as a dimer of ATPases. Further, the nucleotide state determines whether the dimer closely engages one or both sides of the nucleosome. Three-dimensional reconstruction by single-particle electron microscopy of the ATPase-nucleosome complex in an activated ATP state reveals a dimer architecture in which the two ATPases face each other. Our results indicate a model in which the two ATPases work in a coordinated manner, taking turns to engage either side of a nucleosome, thereby allowing processive bidirectional movement. This novel dimeric motor mechanism differs from that of dimeric motors such as kinesin and dimeric helicases that processively translocate unidirectionally and reflects the unique challenges faced by motors that move nucleosomes
Controlling Stray Electric Fields on an Atom Chip for Rydberg Experiments
Experiments handling Rydberg atoms near surfaces must necessarily deal with
the high sensitivity of Rydberg atoms to (stray) electric fields that typically
emanate from adsorbates on the surface. We demonstrate a method to modify and
reduce the stray electric field by changing the adsorbates distribution. We use
one of the Rydberg excitation lasers to locally affect the adsorbed dipole
distribution. By adjusting the averaged exposure time we change the strength
(with the minimal value less than at
from the chip) and even the sign of the perpendicular field component. This
technique is a useful tool for experiments handling Ryberg atoms near surfaces,
including atom chips
On the differential geometry of curves in Minkowski space
We discuss some aspects of the differential geometry of curves in Minkowski
space. We establish the Serret-Frenet equations in Minkowski space and use them
to give a very simple proof of the fundamental theorem of curves in Minkowski
space. We also state and prove two other theorems which represent Minkowskian
versions of a very known theorem of the differential geometry of curves in
tridimensional Euclidean space. We discuss the general solution for torsionless
paths in Minkowki space. We then apply the four-dimensional Serret-Frenet
equations to describe the motion of a charged test particle in a constant and
uniform electromagnetic field and show how the curvature and the torsions of
the four-dimensional path of the particle contain information on the
electromagnetic field acting on the particle.Comment: 10 pages. Typeset using REVTE
Sharp estimates on the first eigenvalue of the p-Laplacian with negative Ricci lower bound
We complete the picture of sharp eigenvalue estimates for the p-Laplacian on
a compact manifold by providing sharp estimates on the first nonzero eigenvalue
of the nonlinear operator when the Ricci curvature is bounded from
below by a negative constant. We assume that the boundary of the manifold is
convex, and put Neumann boundary conditions on it. The proof is based on a
refined gradient comparison technique and a careful analysis of the underlying
model spaces.Comment: Sign mistake fixed in the proof of the gradient comparison theorem
(theorem 5.1 pag 10), and some minor improvements aroun
Topics on the geometry of D-brane charges and Ramond-Ramond fields
In this paper we discuss some topics on the geometry of type II superstring
backgrounds with D-branes, in particular on the geometrical meaning of the
D-brane charge, the Ramond-Ramond fields and the Wess-Zumino action. We see
that, depending on the behaviour of the D-brane on the four non-compact
space-time directions, we need different notions of homology and cohomology to
discuss the associated fields and charge: we give a mathematical definition of
such notions and show their physical applications. We then discuss the problem
of corretly defining Wess-Zumino action using the theory of p-gerbes. Finally,
we recall the so-called *-problem and make some brief remarks about it.Comment: 29 pages, no figure
The geometry of entanglement: metrics, connections and the geometric phase
Using the natural connection equivalent to the SU(2) Yang-Mills instanton on
the quaternionic Hopf fibration of over the quaternionic projective space
with an fiber the geometry of
entanglement for two qubits is investigated. The relationship between base and
fiber i.e. the twisting of the bundle corresponds to the entanglement of the
qubits. The measure of entanglement can be related to the length of the
shortest geodesic with respect to the Mannoury-Fubini-Study metric on between an arbitrary entangled state, and the separable state nearest to
it. Using this result an interpretation of the standard Schmidt decomposition
in geometric terms is given. Schmidt states are the nearest and furthest
separable ones lying on, or the ones obtained by parallel transport along the
geodesic passing through the entangled state. Some examples showing the
correspondence between the anolonomy of the connection and entanglement via the
geometric phase is shown. Connections with important notions like the
Bures-metric, Uhlmann's connection, the hyperbolic structure for density
matrices and anholonomic quantum computation are also pointed out.Comment: 42 page
Polar distortions in hydrogen bonded organic ferroelectrics
Although ferroelectric compounds containing hydrogen bonds were among the
first to be discovered, organic ferroelectrics are relatively rare. The
discovery of high polarization at room temperature in croconic acid [Nature
\textbf{463}, 789 (2010)] has led to a renewed interest in organic
ferroelectrics. We present an ab-initio study of two ferroelectric organic
molecular crystals, 1-cyclobutene-1,2-dicarboxylic acid (CBDC) and
2-phenylmalondialdehyde (PhMDA). By using a distortion-mode analysis we shed
light on the microscopic mechanisms contributing to the polarization, which we
find to be as large as 14.3 and 7.0\,C/cm for CBDC and PhMDA
respectively. These results suggest that it may be fruitful to search among
known but poorly characterized organic compounds for organic ferroelectrics
with enhanced polar properties suitable for device applications.Comment: Submitte
Bundle Theory of Improper Spin Transformations
{\it We first give a geometrical description of the action of the parity
operator () on non relativistic spin Pauli spinors in
terms of bundle theory. The relevant bundle, , is a
non trivial extension of the universal covering group .
is the non relativistic limit of the corresponding Dirac matrix
operator and obeys . Then, from the direct
product of O(3) by , naturally induced by the structure of the galilean
group, we identify, in its double cover, the time reversal operator ()
acting on spinors, and its product with . Both, and
, generate the group . As in the case of parity,
is the non relativistic limit of the corresponding Dirac matrix
operator , and obeys .}Comment: 8 pages, Plaintex; titled changed, minor text modifications, one
reference complete
Limits on Stellar and Planetary Companions in Microlensing Event OGLE-1998-BUL-14
We present the PLANET photometric data set for \ob14, a high magnification
() event alerted by the OGLE collaboration toward the
Galactic bulge in 1998. The PLANET data set consists a total of 461 I-band and
139 band points, the majority of which was taken over a three month period.
The median sampling interval during this period is about 1 hour, and the
scatter over the peak of the event is 1.5%. The excellent data
quality and high maximum magnification of this event make it a prime candidate
to search for the short duration, low amplitude perturbations that are
signatures of a planetary companion orbiting the primary lens. The observed
light curve for \ob14 is consistent with a single lens (no companion) within
photometric uncertainties. We calculate the detection efficiency of the light
curve to lensing companions as a function of the mass ratio and angular
separation of the two components. We find that companions of mass ratio are ruled out at the 95% confidence level for projected separations
between 0.4-2.4 \re, where \re is the Einstein ring radius of the primary
lens. Assuming that the primary is a G-dwarf with \re\sim3 {\rm AU} our
detection efficiency for this event is for a companion with the mass
and separation of Jupiter and for a companion with the mass and
separation of Saturn. Our efficiencies for planets like those around Upsilon
And and 14 Her are > 75%.Comment: Data available at http://www.astro.rug.nl/~planet/planetpapers.html
20 pages, 10 figures. Minor changes. ApJ, accepte
- …
