502 research outputs found

    A three dimensional Dirichlet-to-Neumann operator for waves over topography

    Full text link
    Surface water waves are considered propagating over highly variable non-smooth topographies. For this three dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modeling and evolution to the two dimensional free surface. The corresponding Fourier-type operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care and a Galerkin method is provided accordingly. One dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large amplitude, rapidly varying topography. An alternative, conformal mapping based, method is used for benchmarking. A two dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three dimensional DtN operator

    Topological Test Spaces

    Full text link
    A test space is the set of outcome-sets associated with a collection of experiments. This notion provides a simple mathematical framework for the study of probabilistic theories -- notably, quantum mechanics -- in which one is faced with incommensurable random quantities. In the case of quantum mechanics, the relevant test space, the set of orthonormal bases of a Hilbert space, carries significant topological structure. This paper inaugurates a general study of topological test spaces. Among other things, we show that any topological test space with a compact space of outcomes is of finite rank. We also generalize results of Meyer and Clifton-Kent by showing that, under very weak assumptions, any second-countable topological test space contains a dense semi-classical test space.Comment: 12 pp., LaTeX 2e. To appear in Int. J. Theor. Phy

    Partial order and a T0T_0-topology in a set of finite quantum systems

    Full text link
    A `whole-part' theory is developed for a set of finite quantum systems Σ(n)\Sigma (n) with variables in Z(n){\mathbb Z}(n). The partial order `subsystem' is defined, by embedding various attributes of the system Σ(m)\Sigma (m) (quantum states, density matrices, etc) into their counterparts in the supersystem Σ(n)\Sigma (n) (for mnm|n). The compatibility of these embeddings is studied. The concept of ubiquity is introduced for quantities which fit with this structure. It is shown that various entropic quantities are ubiquitous. The sets of various quantities become T0T_0-topological spaces with the divisor topology, which encapsulates fundamental physical properties. These sets can be converted into directed-complete partial orders (dcpo), by adding `top elements'. The continuity of various maps among these sets is studied

    Magnetic Backgrounds from Generalised Complex Manifolds

    Full text link
    The magnetic backgrounds that physically give rise to spacetime noncommutativity are generally treated using noncommutative geometry. In this article we prove that also the theory of generalised complex manifolds contains the necessary elements to generate B-fields geometrically. As an example, the Poisson brackets of the Landau model (electric charges on a plane subject to an external, perperdicularly applied magnetic field) are rederived using the techniques of generalised complex manifolds.Comment: Some refs. adde

    Bandgaps in the propagation and scattering of surface water waves over cylindrical steps

    Full text link
    Here we investigate the propagation and scattering of surface water waves by arrays of bottom-mounted cylindrical steps. Both periodic and random arrangements of the steps are considered. The wave transmission through the arrays is computed using the multiple scattering method based upon a recently derived formulation. For the periodic case, the results are compared to the band structure calculation. We demonstrate that complete band gaps can be obtained in such a system. Furthermore, we show that the randomization of the location of the steps can significantly reduce the transmission of water waves. Comparison with other systems is also discussed.Comment: 4 pages, 3 figure

    A convenient category of locally preordered spaces

    Full text link
    As a practical foundation for a homotopy theory of abstract spacetime, we extend a category of certain compact partially ordered spaces to a convenient category of locally preordered spaces. In particular, we show that our new category is Cartesian closed and that the forgetful functor to the category of compactly generated spaces creates all limits and colimits.Comment: 26 pages, 0 figures, partially presented at GETCO 2005; changes: claim of Prop. 5.11 weakened to finite case and proof changed due to problems with proof of Lemma 3.26, now removed; Eg. 2.7, statement before Lem. 2.11, typos, and other minor problems corrected throughout; extensive rewording; proof of Lem. 3.31, now 3.30, adde

    Water waves over a rough bottom in the shallow water regime

    Full text link
    This is a study of the Euler equations for free surface water waves in the case of varying bathymetry, considering the problem in the shallow water scaling regime. In the case of rapidly varying periodic bottom boundaries this is a problem of homogenization theory. In this setting we derive a new model system of equations, consisting of the classical shallow water equations coupled with nonlocal evolution equations for a periodic corrector term. We also exhibit a new resonance phenomenon between surface waves and a periodic bottom. This resonance, which gives rise to secular growth of surface wave patterns, can be viewed as a nonlinear generalization of the classical Bragg resonance. We justify the derivation of our model with a rigorous mathematical analysis of the scaling limit and the resulting error terms. The principal issue is that the shallow water limit and the homogenization process must be performed simultaneously. Our model equations and the error analysis are valid for both the two- and the three-dimensional physical problems.Comment: Revised version, to appear in Annales de l'Institut Henri Poincar\'

    On chains in HH-closed topological pospaces

    Full text link
    We study chains in an HH-closed topological partially ordered space. We give sufficient conditions for a maximal chain LL in an HH-closed topological partially ordered space such that LL contains a maximal (minimal) element. Also we give sufficient conditions for a linearly ordered topological partially ordered space to be HH-closed. We prove that any HH-closed topological semilattice contains a zero. We show that a linearly ordered HH-closed topological semilattice is an HH-closed topological pospace and show that in the general case this is not true. We construct an example an HH-closed topological pospace with a non-HH-closed maximal chain and give sufficient conditions that a maximal chain of an HH-closed topological pospace is an HH-closed topological pospace.Comment: We have rewritten and substantially expanded the manuscrip
    corecore