320 research outputs found
Mechanisms controlling anaemia in Trypanosoma congolense infected mice.
Trypanosoma congolense are extracellular protozoan parasites of the blood stream of artiodactyls and are one of the main constraints on cattle production in Africa. In cattle, anaemia is the key feature of disease and persists after parasitaemia has declined to low or undetectable levels, but treatment to clear the parasites usually resolves the anaemia. The progress of anaemia after Trypanosoma congolense infection was followed in three mouse strains. Anaemia developed rapidly in all three strains until the peak of the first wave of parasitaemia. This was followed by a second phase, characterized by slower progress to severe anaemia in C57BL/6, by slow recovery in surviving A/J and a rapid recovery in BALB/c. There was no association between parasitaemia and severity of anaemia. Furthermore, functional T lymphocytes are not required for the induction of anaemia, since suppression of T cell activity with Cyclosporin A had neither an effect on the course of infection nor on anaemia. Expression of genes involved in erythropoiesis and iron metabolism was followed in spleen, liver and kidney tissues in the three strains of mice using microarrays. There was no evidence for a response to erythropoietin, consistent with anaemia of chronic disease, which is erythropoietin insensitive. However, the expression of transcription factors and genes involved in erythropoiesis and haemolysis did correlate with the expression of the inflammatory cytokines Il6 and Ifng. The innate immune response appears to be the major contributor to the inflammation associated with anaemia since suppression of T cells with CsA had no observable effect. Several transcription factors regulating haematopoiesis, Tal1, Gata1, Zfpm1 and Klf1 were expressed at consistently lower levels in C57BL/6 mice suggesting that these mice have a lower haematopoietic capacity and therefore less ability to recover from haemolysis induced anaemia after infection
<i>Trypanosoma brucei rhodesiense</i> transmitted by a single tsetse fly bite in vervet monkeys as a model of human African trypanosomiasis
Sleeping sickness is caused by a species of trypanosome blood parasite that is transmitted by tsetse flies. To understand better how infection with this parasite leads to disease, we provide here the most detailed description yet of the course of infection and disease onset in vervet monkeys. One infected tsetse fly was allowed to feed on each host individual, and in all cases infections were successful. The characteristics of infection and disease were similar in all hosts, but the rate of progression varied considerably. Parasites were first detected in the blood 4-10 days after infection, showing that migration of parasites from the site of fly bite was very rapid. Anaemia was a key feature of disease, with a reduction in the numbers and average size of red blood cells and associated decline in numbers of platelets and white blood cells. One to six weeks after infection, parasites were observed in the cerebrospinal fluid (CSF), indicating that they had moved from the blood into the brain; this was associated with a white cell infiltration. This study shows that fly-transmitted infection in vervets accurately mimics human disease and provides a robust model to understand better how sleeping sickness develops
A Systematic Review of Cost-of-Illness Studies of Multimorbidity
Objectives: The economic burden of multimorbidity is considerable. This review analyzed the methods of cost-of-illness (COI) studies and summarized the economic outcomes of multimorbidity. Methods: A systematic review (2000–2016) was performed, which was registered with Prospero, reported according to PRISMA, and used a quality checklist adapted for COI studies. The inclusion criteria were peer-reviewed COI studies on multimorbidity, whereas the exclusion criterion was studies focusing on an index disease. Extracted data included the definition, measure, and prevalence of multimorbidity; the number of included health conditions; the age of study population; the variables used in the COI methodology; the percentage of multimorbidity vs. total costs; and the average costs per capita. Results: Among the 26 included articles, 14 defined multimorbidity as a simple count of 2 or more conditions. Methodologies used to derive the costs were markedly different. Given different healthcare systems, OOP payments of multimorbidity varied across countries. In the 17 and 12 studies with cut-offs of ≥2 and ≥3 conditions, respectively, the ratios of multimorbidity to non-multimorbidity costs ranged from 2–16 to 2–10. Among the ten studies that provided cost breakdowns, studies with and without a societal perspective attributed the largest percentage of multimorbidity costs to social care and inpatient care/medicine, respectively. Conclusion: Multimorbidity was associated with considerable economic burden. Synthesising the cost of multimorbidity was challenging due to multiple definitions of multimorbidity and heterogeneity in COI methods. Count method was most popular to define multimorbidity. There is consistent evidence that multimorbidity was associated with higher costs
Nef interferes with development of thymic T cell precursors: differential mechanisms in HIV and SIV
BioMed Central Open acces
Relationship of faecal calprotectin and long-term outcomes in Finnish patients with Crohn's disease : retrospective multi-centre chart review study
Background and Aims: A retrospective non-interventional, multi-centre patient chart review study was conducted to investigate the association of faecal calprotectin (FC) 1 year (+/- 2 months) after biological therapy initiation with composite event-free survival (CEFS) consisting of surgical procedures, corticosteroid initiation, treatment failure or dose increase in patients with Crohn's disease (CD). In addition, the correlations of FC and other tests of disease activity were assessed. Materials and methods: Data on Finnish CD patients initiating a biological therapy between 2010 and 2016, were collected. The association of FC and CEFS was analysed with Kaplan-Meier and Cox proportional hazard modelling. The correlations were tested with Pearson's test. Results: Biological therapy was initiated in 186 patients, of which 87 (46.8%) had FC results available at 1 year and 80 had follow-up exceeding 14 months. The characteristics of patients with and without FC results were similar. Patients with elevated FC (>250 mu g/g) had a significantly increased risk of experiencing composite event (HR 3.4, 95% CI: 1.3-8.9; p = .013) when compared to patients with normal FC (FCPeer reviewe
Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility
<p>Abstract</p> <p>Background</p> <p>African animal trypanosomiasis (AAT) caused by tsetse fly-transmitted protozoa of the genus <it>Trypanosoma </it>is a major constraint on livestock and agricultural production in Africa and is among the top ten global cattle diseases impacting on the poor. Here we show that a functional genomics approach can be used to identify temporal changes in host peripheral blood mononuclear cell (PBMC) gene expression due to disease progression. We also show that major gene expression differences exist between cattle from trypanotolerant and trypanosusceptible breeds. Using bovine long oligonucleotide microarrays and real time quantitative reverse transcription PCR (qRT-PCR) validation we analysed PBMC gene expression in naïve trypanotolerant and trypanosusceptible cattle experimentally challenged with <it>Trypanosoma congolense </it>across a 34-day infection time course.</p> <p>Results</p> <p>Trypanotolerant N'Dama cattle displayed a rapid and distinct transcriptional response to infection, with a ten-fold higher number of genes differentially expressed at day 14 post-infection compared to trypanosusceptible Boran cattle. These analyses identified coordinated temporal gene expression changes for both breeds in response to trypanosome infection. In addition, a panel of genes were identified that showed pronounced differences in gene expression between the two breeds, which may underlie the phenomena of trypanotolerance and trypanosusceptibility. Gene ontology (GO) analysis demonstrate that the products of these genes may contribute to increased mitochondrial mRNA translational efficiency, a more pronounced B cell response, an elevated activation status and a heightened response to stress in trypanotolerant cattle.</p> <p>Conclusion</p> <p>This study has revealed an extensive and diverse range of cellular processes that are altered temporally in response to trypanosome infection in African cattle. Results indicate that the trypanotolerant N'Dama cattle respond more rapidly and with a greater magnitude to infection compared to the trypanosusceptible Boran cattle. Specifically, a subset of the genes analyzed by real time qRT-PCR, which display significant breed differences, could collectively contribute to the trypanotolerance trait in N'Dama.</p
Synaptic density affects clinical severity via network dysfunction in syndromes associated with frontotemporal lobar degeneration
There is extensive synaptic loss from frontotemporal lobar degeneration, in preclinical models and human in vivo and post mortem studies. Understanding the consequences of synaptic loss for network function is important to support translational models and guide future therapeutic strategies. To examine this relationship, we recruited 55 participants with syndromes associated with frontotemporal lobar degeneration and 24 healthy controls. We measured synaptic density with positron emission tomography using the radioligand [11C]UCB-J, which binds to the presynaptic vesicle glycoprotein SV2A, neurite dispersion with diffusion magnetic resonance imaging, and network function with task-free magnetic resonance imaging functional connectivity. Synaptic density and neurite dispersion in patients was associated with reduced connectivity beyond atrophy. Functional connectivity moderated the relationship between synaptic density and clinical severity. Our findings confirm the importance of synaptic loss in frontotemporal lobar degeneration syndromes, and the resulting effect on behaviour as a function of abnormal connectivity
Differential Synaptic Loss in β-Amyloid Positive Versus β-Amyloid Negative Corticobasal Syndrome
BACKGROUND/OBJECTIVE: The corticobasal syndrome (CBS) is a complex asymmetric movement disorder, with cognitive impairment. Although commonly associated with the primary 4-repeat-tauopathy of corticobasal degeneration, clinicopathological correlation is poor, and a significant proportion is due to Alzheimer's disease (AD). Synaptic loss is a pathological feature of many clinical and preclinical tauopathies. We therefore measured the degree of synaptic loss in patients with CBS and tested whether synaptic loss differed according to β-amyloid status. METHODS: Twenty-five people with CBS, and 32 age-/sex-/education-matched healthy controls participated. Regional synaptic density was estimated by [11C]UCB-J non-displaceable binding potential (BPND), AD-tau pathology by [18F]AV-1451 BPND, and gray matter volume by T1-weighted magnetic resonance imaging. Participants with CBS had β-amyloid imaging with 11C-labeled Pittsburgh Compound-B ([11C]PiB) positron emission tomography. Symptom severity was assessed with the progressive supranuclear palsy-rating-scale, the cortical basal ganglia functional scale, and the revised Addenbrooke's Cognitive Examination. Regional differences in BPND and gray matter volume between groups were assessed by ANOVA. RESULTS: Compared to controls, patients with CBS had higher [18F]AV-1451 uptake, gray matter volume loss, and reduced synaptic density. Synaptic loss was more severe and widespread in the β-amyloid negative group. Asymmetry of synaptic loss was in line with the clinically most affected side. DISCUSSION: Distinct patterns of [11C]UCB-J and [18F]AV-1451 binding and gray matter volume loss, indicate differences in the pathogenic mechanisms of CBS according to whether it is associated with the presence of Alzheimer's disease or not. This highlights the potential for different therapeutic strategies in CBSs
The Role of B-cells and IgM Antibodies in Parasitemia, Anemia, and VSG Switching in Trypanosoma brucei–Infected Mice
African trypanosomes are extracellular parasitic protozoa, predominantly transmitted by the bite of the haematophagic tsetse fly. The main mechanism considered to mediate parasitemia control in a mammalian host is the continuous interaction between antibodies and the parasite surface, covered by variant-specific surface glycoproteins. Early experimental studies have shown that B-cell responses can be strongly protective but are limited by their VSG-specificity. We have used B-cell (µMT) and IgM-deficient (IgM−/−) mice to investigate the role of B-cells and IgM antibodies in parasitemia control and the in vivo induction of trypanosomiasis-associated anemia. These infection studies revealed that that the initial setting of peak levels of parasitemia in Trypanosoma brucei–infected µMT and IgM−/− mice occurred independent of the presence of B-cells. However, B-cells helped to periodically reduce circulating parasites levels and were required for long term survival, while IgM antibodies played only a limited role in this process. Infection-associated anemia, hypothesized to be mediated by B-cell responses, was induced during infection in µMT mice as well as in IgM−/− mice, and as such occurred independently from the infection-induced host antibody response. Antigenic variation, the main immune evasion mechanism of African trypanosomes, occurred independently from host antibody responses against the parasite's ever-changing antigenic glycoprotein coat. Collectively, these results demonstrated that in murine experimental T. brucei trypanosomiasis, B-cells were crucial for periodic peak parasitemia clearance, whereas parasite-induced IgM antibodies played only a limited role in the outcome of the infection
Alzheimer’s disease and memantine effects on NMDA-receptor blockade: non-invasive in vivo insights from magnetoencephalography
To accelerate new treatments for Alzheimer’s disease, there is the need for human pathophysiological biomarkers that are sensitive to treatment and disease mechanisms. In this proof-of-concept study, we assess new biophysical models of non-invasive human MEG imaging to test the pharmacological and disease modulation of NMDA-receptor inhibition. Magnetoencephalography was recorded during an auditory mismatch negativity paradigm from (1) neurologically-healthy people on memantine or placebo (n = 19, placebo-controlled crossover design); (2) people with Alzheimer’s disease at baseline and 16-months (n = 42, amyloid-biomarker positive, longitudinal observational design). Optimised dynamic causal models inferred voltage-dependent NMDA-receptor blockade using Parametric Empirical Bayes to test group effects. The mismatch negativity amplitude was attenuated when Alzheimer’s disease was more severe (lower baseline mini-mental state examination) and after follow-up (versus baseline). Memantine increased NMDA-receptor inhibition, compared to placebo. Alzheimer’s disease reduced NMDA-receptor inhibition in proportion to severity and over time. In line with preclinical studies, we confirm in humans that memantine and Alzheimer’s disease have opposing effects on NMDA-receptor inhibition. The ability to infer such receptor dynamics and pharmacology from non-invasive physiological recordings has wide applications, including the assessment of other neurological disorders and novel drugs intended for symptomatic or disease-modifying treatments
- …
