6,060 research outputs found

    Prototyping Operational Autonomy for Space Traffic Management

    Get PDF
    Current state of the art in Space Traffic Management (STM) relies on a handful of providers for surveillance and collision prediction, and manual coordination between operators. Neither is scalable to support the expected 10x increase in spacecraft population in less than 10 years, nor does it support automated manuever planning. We present a software prototype of an STM architecture based on open Application Programming Interfaces (APIs), drawing on previous work by NASA to develop an architecture for low-altitude Unmanned Aerial System Traffic Management. The STM architecture is designed to provide structure to the interactions between spacecraft operators, various regulatory bodies, and service suppliers, while maintaining flexibility of these interactions and the ability for new market participants to enter easily. Autonomy is an indispensable part of the proposed architecture in enabling efficient data sharing, coordination between STM participants and safe flight operations. Examples of autonomy within STM include syncing multiple non-authoritative catalogs of resident space objects, or determining which spacecraft maneuvers when preventing impending conjunctions between multiple spacecraft. The STM prototype is based on modern micro-service architecture adhering to OpenAPI standards and deployed in industry standard Docker containers, facilitating easy communication between different participants or services. The system architecture is designed to facilitate adding and replacing services with minimal disruption. We have implemented some example participant services (e.g. a space situational awareness provider/SSA, a conjunction assessment supplier/CAS, an automated maneuver advisor/AMA) within the prototype. Different services, with creative algorithms folded into then, can fulfil similar functional roles within the STM architecture by flexibly connecting to it using pre-defined APIs and data models, thereby lowering the barrier to entry of new players in the STM marketplace. We demonstrate the STM prototype on a multiple conjunction scenario with multiple maneuverable spacecraft, where an example CAS and AMA can recommend optimal maneuvers to the spacecraft operators, based on a predefined reward function. Such tools can intelligently search the space of potential collision avoidance maneuvers with varying parameters like lead time and propellant usage, optimize a customized reward function, and be implemented as a scheduling service within the STM architecture. The case study shows an example of autonomous maneuver planning is possible using the API-based framework. As satellite populations and predicted conjunctions increase, an STM architecture can facilitate seamless information exchange related to collision prediction and mitigation among various service applications on different platforms and servers. The availability of such an STM network also opens up new research topics on satellite maneuver planning, scheduling and negotiation across disjoint entities

    On Differential Structure for Projective Limits of Manifolds

    Full text link
    We investigate the differential calculus defined by Ashtekar and Lewandowski on projective limits of manifolds by means of cylindrical smooth functions and compare it with the C^infty calculus proposed by Froehlicher and Kriegl in more general context. For products of connected manifolds, a Boman theorem is proved, showing the equivalence of the two calculi in this particular case. Several examples of projective limits of manifolds are discussed, arising in String Theory and in loop quantization of Gauge Theories.Comment: 38 pages, Latex 2e, to be published on J. Geom. Phys minor misprints corrected, reference adde

    Evaluation of the Performance Characteristics of CGLSS II and U.S. NLDN Using Ground-Truth Dalta from Launch Complex 398, Kennedy Space Center, Florida

    Get PDF
    A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC39B) at the Kennedy Space Center, Florida. This new instrumentation system includes seven synchronized high-speed video cameras, current sensors installed on the nine downconductors of the new lightning protection system (LPS) for LC39B; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. The LPS received 8 direct lightning strikes (a total of 19 strokes) from March 31 through December 31 2011. The measured peak currents and locations are compared to those reported by the Cloud-to-Ground Lightning Surveillance System (CGLSS II) and the National Lightning Detection Network (NLDN). Results of comparison are presented and analyzed in this paper

    Aligning Perspectives and Methods for Value-Driven Design

    Get PDF
    Recent years have seen a push to use explicit consideration of “value” in order to drive design. This paper conveys the need to explicitly align perspectives on “value” with the method used to quantify “value.” Various concepts of value are introduced in the context of its evolution within economics in order to propose a holistic definition of value. Operationalization of value is discussed, including possible assumption violations in the aerospace domain. A series of prominent Value-Centric Design Methodologies for valuation are introduced, including Net Present Value, Multi-Attribute Utility Theory, and Cost-Benefit Analysis. These methods are compared in terms of the assumptions they make with regard to operationalizing value. It is shown that no method is fully complete in capturing the definition of value, but selecting the most appropriate one involves matching the particular system application being valued with acceptable assumptions for valuation. Two case studies, a telecommunications mission and a deep-space observation mission, are used to illustrate application of the three prior mentioned valuation methods. The results of the studies show that depending on method used for valuation, very different conclusions and insights will be derived, therefore an explicit consideration of the appropriate definition of value is necessary in order to align a chosen method with desired valuation insights.Massachusetts Institute of Technology. Systems Engineering Advancement Research Initiativ

    Evaluation of the Performance Characteristics of CGLSS II and U.S. NLDN Using Ground-Truth Data from Launch Complex 398, Kennedy Space Center, Florida

    Get PDF
    A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC39B) at the Kennedy Space Center, Florida. This new instrumentation system includes six synchronized high-speed video cameras, current sensors installed on the nine downcouductors of the new lightning protection system (LPS) for LC39B; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. The LPS received 8 direct lightning strikes (a total of 19 strokes) from March 31 through December 31, 2011. The measured peak currents and locations are compared to those reported by the CGLSS 11 and the NLDN. Results of comparison are presented and analyzed in this paper

    A Novel Azeotropic Mixture for Solvent Extraction of Edible Oils

    Full text link
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 8 (2006): A Novel Azeotropic Mixture for Solvent Extraction of Edible Oils. Manuscript FP 06 005. Vol. VIII. April, 2006

    Iterative in Situ Click Chemistry Assembles a Branched Capture Agent and Allosteric Inhibitor for Akt1

    Get PDF
    We describe the use of iterative in situ click chemistry to design an Akt-specific branched peptide triligand that is a drop-in replacement for monoclonal antibodies in multiple biochemical assays. Each peptide module in the branched structure makes unique contributions to affinity and/or specificity resulting in a 200 nM affinity ligand that efficiently immunoprecipitates Akt from cancer cell lysates and labels Akt in fixed cells. Our use of a small molecule to preinhibit Akt prior to screening resulted in low micromolar inhibitory potency and an allosteric mode of inhibition, which is evidenced through a series of competitive enzyme kinetic assays. To demonstrate the efficiency and selectivity of the protein-templated in situ click reaction, we developed a novel QPCR-based methodology that enabled a quantitative assessment of its yield. These results point to the potential for iterative in situ click chemistry to generate potent, synthetically accessible antibody replacements with novel inhibitory properties
    corecore