1,149 research outputs found

    Spotting Separator Points at Line Terminals in Compressed Document Images for Text-line Segmentation

    Full text link
    Line separators are used to segregate text-lines from one another in document image analysis. Finding the separator points at every line terminal in a document image would enable text-line segmentation. In particular, identifying the separators in handwritten text could be a thrilling exercise. Obviously it would be challenging to perform this in the compressed version of a document image and that is the proposed objective in this research. Such an effort would prevent the computational burden of decompressing a document for text-line segmentation. Since document images are generally compressed using run length encoding (RLE) technique as per the CCITT standards, the first column in the RLE will be a white column. The value (depth) in the white column is very low when a particular line is a text line and the depth could be larger at the point of text line separation. A longer consecutive sequence of such larger depth should indicate the gap between the text lines, which provides the separator region. In case of over separation and under separation issues, corrective actions such as deletion and insertion are suggested respectively. An extensive experimentation is conducted on the compressed images of the benchmark datasets of ICDAR13 and Alireza et al [17] to demonstrate the efficacy.Comment: Line separators, Document image analysis, Handwritten text, Compression and decompression, RLE, CCITT. Line separator points at every line terminal in a compressed handwritten document images enabling text line segmentatio

    GLCM-based chi-square histogram distance for automatic detection of defects on patterned textures

    Full text link
    Chi-square histogram distance is one of the distance measures that can be used to find dissimilarity between two histograms. Motivated by the fact that texture discrimination by human vision system is based on second-order statistics, we make use of histogram of gray-level co-occurrence matrix (GLCM) that is based on second-order statistics and propose a new machine vision algorithm for automatic defect detection on patterned textures. Input defective images are split into several periodic blocks and GLCMs are computed after quantizing the gray levels from 0-255 to 0-63 to keep the size of GLCM compact and to reduce computation time. Dissimilarity matrix derived from chi-square distances of the GLCMs is subjected to hierarchical clustering to automatically identify defective and defect-free blocks. Effectiveness of the proposed method is demonstrated through experiments on defective real-fabric images of 2 major wallpaper groups (pmm and p4m groups).Comment: IJCVR, Vol. 2, No. 4, 2011, pp. 302-31

    Extraction of Projection Profile, Run-Histogram and Entropy Features Straight from Run-Length Compressed Text-Documents

    Full text link
    Document Image Analysis, like any Digital Image Analysis requires identification and extraction of proper features, which are generally extracted from uncompressed images, though in reality images are made available in compressed form for the reasons such as transmission and storage efficiency. However, this implies that the compressed image should be decompressed, which indents additional computing resources. This limitation induces the motivation to research in extracting features directly from the compressed image. In this research, we propose to extract essential features such as projection profile, run-histogram and entropy for text document analysis directly from run-length compressed text-documents. The experimentation illustrates that features are extracted directly from the compressed image without going through the stage of decompression, because of which the computing time is reduced. The feature values so extracted are exactly identical to those extracted from uncompressed images.Comment: Published by IEEE in Proceedings of ACPR-2013. arXiv admin note: text overlap with arXiv:1403.778

    An experimental and analytical investigation of isolated rotor flap-lag stability in forward flight

    Get PDF
    For flap-lag stability of isolated rotors, experimental and analytical investigations are conducted in hover and forward flight on the adequacy of a linear quasisteady aerodynamics theory with dynamic inflow. Forward flight effects on lag regressing mode are emphasized. A soft inplane hingeless rotor with three blades is tested at advance ratios as high as 0.55 and at shaft angles as high as 20 degrees. In combination with lag natural frequencies, collective pitch settings and flap-lag coupling parameters, the data base comprises nearly 1200 test points (damping and frequency) in forward flight and 200 test points in hover. By computerized symbolic manipulations, an analytic model is developed in substall to predict stability margins with mode identification. It also predicts substall and stall regions to help explain the correlation between theory and data

    THE OLFACTORY SYSTEM REGULATES ACUTE MOUNTAIN SICKNESS

    Get PDF
    OBJECTIVE:Hyperventilation is the first response to hypoxia in high altitude (HA). Our study on rats was designed to establish an integrated hypothesis to include hyperventilation, increased activity of hypothalamicpituitary-adrenocortical axis (HPA) in response to initial exposure to hypoxia and failure of adaptation to stress in olfactory bulbectomised rats. .METHODS:Albino rats whose olfactory lobes were removed were subjected to hypoxia and hypothermic conditions. Blood and urine samples were collected at various stages to measure biochemical parameters. Rats whose olfactory systems were intact were used as controls.RESULTS:The results suggested that the olfactory system regulated pituitary function and that in rats whose olfactory lobes were removed failed to adapt to the stress created by hypoxia and hypothermia.CONCLUSIONS:Acute Mountain Sickness (AMS) is a type of stress. Normal rats when subjected to stress such as AMSare able to adapt. This adaptation is lost when the olfactory bulbs are removed. It is postulated that serotonin receptors in the hypothalamus, through the splanchnic pathway regulate stress. This mechanism is independent of ACTH – Cortisol feed back system. Perhaps irregular and rapid respiratory rhythm simulates physiological Olfactory Bulbectomy during rapid climbing and AMS manifests as a failure of stress adaptation

    Streaming Video QoE Modeling and Prediction: A Long Short-Term Memory Approach

    Get PDF
    HTTP based adaptive video streaming has become a popular choice of streaming due to the reliable transmission and the flexibility offered to adapt to varying network conditions. However, due to rate adaptation in adaptive streaming, the quality of the videos at the client keeps varying with time depending on the end-to-end network conditions. Further, varying network conditions can lead to the video client running out of playback content resulting in rebuffering events. These factors affect the user satisfaction and cause degradation of the user quality of experience (QoE). It is important to quantify the perceptual QoE of the streaming video users and monitor the same in a continuous manner so that the QoE degradation can be minimized. However, the continuous evaluation of QoE is challenging as it is determined by complex dynamic interactions among the QoE influencing factors. Towards this end, we present LSTM-QoE, a recurrent neural network based QoE prediction model using a Long Short-Term Memory (LSTM) network. The LSTM-QoE is a network of cascaded LSTM blocks to capture the nonlinearities and the complex temporal dependencies involved in the time varying QoE. Based on an evaluation over several publicly available continuous QoE databases, we demonstrate that the LSTM-QoE has the capability to model the QoE dynamics effectively. We compare the proposed model with the state-of-the-art QoE prediction models and show that it provides superior performance across these databases. Further, we discuss the state space perspective for the LSTM-QoE and show the efficacy of the state space modeling approaches for QoE prediction
    corecore