851 research outputs found
Cooling a nanomechanical resonator with quantum back-action
Quantum mechanics demands that the act of measurement must affect the
measured object. When a linear amplifier is used to continuously monitor the
position of an object, the Heisenberg uncertainty relationship requires that
the object be driven by force impulses, called back-action. Here we measure the
back-action of a superconducting single-electron transistor (SSET) on a
radiofrequency nanomechanical resonator. The conductance of the SSET, which is
capacitively coupled to the resonator, provides a sensitive probe of the
latter's position;back-action effects manifest themselves as an effective
thermal bath, the properties of which depend sensitively on SSET bias
conditions. Surprisingly, when the SSET is biased near a transport resonance,
we observe cooling of the nanomechanical mode from 550mK to 300mK-- an effect
that is analogous to laser cooling in atomic physics. Our measurements have
implications for nanomechanical readout of quantum information devices and the
limits of ultrasensitive force microscopy (such as single-nuclear-spin magnetic
resonance force microscopy). Furthermore, we anticipate the use of these
backaction effects to prepare ultracold and quantum states of mechanical
structures, which would not be accessible with existing technology.Comment: 28 pages, 7 figures; accepted for publication in Natur
Minimization of phonon-tunneling dissipation in mechanical resonators
Micro- and nanoscale mechanical resonators have recently emerged as
ubiquitous devices for use in advanced technological applications, for example
in mobile communications and inertial sensors, and as novel tools for
fundamental scientific endeavors. Their performance is in many cases limited by
the deleterious effects of mechanical damping. Here, we report a significant
advancement towards understanding and controlling support-induced losses in
generic mechanical resonators. We begin by introducing an efficient numerical
solver, based on the "phonon-tunneling" approach, capable of predicting the
design-limited damping of high-quality mechanical resonators. Further, through
careful device engineering, we isolate support-induced losses and perform the
first rigorous experimental test of the strong geometric dependence of this
loss mechanism. Our results are in excellent agreement with theory,
demonstrating the predictive power of our approach. In combination with recent
progress on complementary dissipation mechanisms, our phonon-tunneling solver
represents a major step towards accurate prediction of the mechanical quality
factor.Comment: 12 pages, 4 figure
A quantum spin transducer based on nano electro-mechancial resonator arrays
Implementation of quantum information processing faces the contradicting
requirements of combining excellent isolation to avoid decoherence with the
ability to control coherent interactions in a many-body quantum system. For
example, spin degrees of freedom of electrons and nuclei provide a good quantum
memory due to their weak magnetic interactions with the environment. However,
for the same reason it is difficult to achieve controlled entanglement of spins
over distances larger than tens of nanometers. Here we propose a universal
realization of a quantum data bus for electronic spin qubits where spins are
coupled to the motion of magnetized mechanical resonators via magnetic field
gradients. Provided that the mechanical system is charged, the magnetic moments
associated with spin qubits can be effectively amplified to enable a coherent
spin-spin coupling over long distances via Coulomb forces. Our approach is
applicable to a wide class of electronic spin qubits which can be localized
near the magnetized tips and can be used for the implementation of hybrid
quantum computing architectures
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Boron isotopes in foraminifera : systematics, biomineralisation, and CO2 reconstruction
Funding: Fellowship from University of St Andrews, $100 (pending) from Richard Zeebe, UK NERC grants NE/N003861/1 and NE/N011716/1.The boron isotope composition of foraminifera provides a powerful tracer for CO2 change over geological time. This proxy is based on the equilibrium of boron and its isotopes in seawater, which is a function of pH. However while the chemical principles underlying this proxy are well understood, its reliability has previously been questioned, due to the difficulty of boron isotope (δ11B) analysis on foraminferal samples and questions regarding calibrations between δ11B and pH. This chapter reviews the current state of the δ11B-pH proxy in foraminfera, including the pioneering studies that established this proxy’s potential, and the recent work that has improved understanding of boron isotope systematics in foraminifera and applied this tracer to the geological record. The theoretical background of the δ11B-pH proxy is introduced, including an accurate formulation of the boron isotope mass balance equations. Sample preparation and analysis procedures are then reviewed, with discussion of sample cleaning, the potential influence of diagenesis, and the strengths and weaknesses of boron purification by column chromatography versus microsublimation, and analysis by NTIMS versus MC-ICPMS. The systematics of boron isotopes in foraminifera are discussed in detail, including results from benthic and planktic taxa, and models of boron incorporation, fractionation, and biomineralisation. Benthic taxa from the deep ocean have δ11B within error of borate ion at seawater pH. This is most easily explained by simple incorporation of borate ion at the pH of seawater. Planktic foraminifera have δ11B close to borate ion, but with minor offsets. These may be driven by physiological influences on the foraminiferal microenvironment; a novel explanation is also suggested for the reduced δ11B-pH sensitivities observed in culture, based on variable calcification rates. Biomineralisation influences on boron isotopes are then explored, addressing the apparently contradictory observations that foraminifera manipulate pH during chamber formation yet their δ11B appears to record the pH of ambient seawater. Potential solutions include the influences of magnesium-removal and carbon concentration, and the possibility that pH elevation is most pronounced during initial chamber formation under favourable environmental conditions. The steps required to reconstruct pH and pCO2 from δ11B are then reviewed, including the influence of seawater chemistry on boron equilibrium, the evolution of seawater δ11B, and the influence of second carbonate system parameters on δ11B-based reconstructions of pCO2. Applications of foraminiferal δ11B to the geological record are highlighted, including studies that trace CO2 storage and release during recent ice ages, and reconstructions of pCO2 over the Cenozoic. Relevant computer codes and data associated with this article are made available online.Publisher PDFPeer reviewe
Integrins as therapeutic targets: lessons and opportunities.
The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets
A study of the Z production cross-section in pp collisions at √s = 7 using tau final states
A measurement of the inclusive Z → ττ cross-section in pp collisions at
√s =7 is presented based on a dataset of 1.0 fb[superscript −1] collected by the LHCb detector. Candidates for Z → τ τ decays are identified through reconstructed final states with two muons, a muon and an electron, a muon and a hadron, or an electron and a hadron. The production cross-section for Z bosons, with invariant mass between 60 and 120 GeV/c[superscript 2], which decay to τ leptons with transverse momenta greater than 20 GeV/c and pseudorapidities between 2.0 and 4.5, is measured to be σ[subscript pp]→Z→ττ = 71.4 ± 3.5 ± 2.8 ± 2.5 pb; the first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the integrated luminosity. The ratio of the cross-sections for Z → τ τ to Z → μμ is determined to be 0.93 ± 0.09, where the uncertainty is the combination of statistical, systematic, and luminosity uncertainties of the two measurements.National Science Foundation (U.S.
Precision measurement of the B0s-B¯0s oscillation frequency with the decay B0s → D−sπ+
A key ingredient to searches for physics beyond the Standard Model in B0s mixing phenomena is the measurement of the B0s– oscillation frequency, which is equivalent to the mass difference Δms of the B0s mass eigenstates. Using the world's largest B0s meson sample accumulated in a dataset, corresponding to an integrated luminosity of 1.0 fb−1, collected by the LHCb experiment at the CERN LHC in 2011, a measurement of Δms is presented. A total of about 34 000 B0s → D−sπ+ signal decays are reconstructed, with an average decay time resolution of 44 fs. The oscillation frequency is measured to be Δms = 17.768 ± 0.023 (stat) ± 0.006 (syst) ps−1, which is the most precise measurement to date
Short-Lived Trace Gases in the Surface Ocean and the Atmosphere
The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science
Sentinel node biopsy for diagnosis of pelvic lymph node involvement in early stage cervical cancer
© 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. This is a protocol for a Cochrane Review (Diagnostic test accuracy). The objectives are as follows: To assess the diagnostic accuracy of sentinel lymph node biopsy in the identification of lymph node involvement in patients with early stage cervical cancer (Stage IA2 to IIA). We will first explore the impact of major factors for heterogeneity such as tumour size, FIGO stage and timing between application, detection of tracers, tracer substance used, surgical approach, experience of the operator and use of histological ultra-staging techniques. Then, we may consider other factors such as previous treatment to the cervix (including conisation), patient age and body mass index, as these have previously been suggested as possible factors associated with success or failure of sentinel node identification (Sinno 2014; Tanner 2015; Wuntakal 2015)
- …
