314 research outputs found
Patagonia: where does it come from?
Based on the recent finding of archeocyathids in molassic middle Cambrian to Early Ordovician age-sequences of northern Patagonia the relationships between this southern part of South America and East Antarctica need to be re-examined. The early Cambrian age of the archeocyathids, and their derivation from the Shackleton Limestones, open several alternatives that are evaluated based on the lithology and the U-Pb zircon ages of the different metamorphic sequences of Patagonia and the Transantarctic Mountains. Based on these data, it is proposed that the Somuncurá Massif of northern Patagonia is the conjugate margin of the Pensacola Mountains in East Antarctica. The main episodes of deformation within the Cambrian-Ordovician Ross Orogeny are correlated, as well as the passive margin setting during the Silurian-Devonian, which indicate that the lower section of the Beacon Supergroup of Antarctica corresponds to the Sierra Grande Formation in Patagonia. These facts show that the Patagonian terrane may have been situated as the conjugate margin of the Transantarctic Mountains from Southern Victoria Land to the Pensacola Mountains. The rifting of Patagonia from Antarctica and the beginning of subduction along western Patagonia, are correlated among different terranes, showing a robust coherent evolution through early Paleozoic times among these blocks. The final amalgamation of Patagonia with Western Gondwana occurred in late Paleozoic times, but is not analyzed in the present contribution.Sobre la base de hallazgos recientes de arqueociátidos en depósitos molásicos de edad cámbrica media a ordovícica temprana del norte de la Patagonia, las relaciones entre esta parte del sur de Sudamérica y Antártida Oriental necesitan ser reexaminadas. La edad cámbrica temprana de los arqueociátidos y su derivación de las Calizas Shackleton abren varias alternativas que son evaluadas sobre la base de la litología y las edades U-Pb en circones de diferentes secuencias metamórficas de la Patagonia y de las Montañas Trasantárticas. Sobre la base de estos datos se propone que el Macizo de Somuncurá del norte de la Patagonia fue el margen conjugado de las Montañas Pensacola de Antártida Oriental. Los episodios principales de deformación son correlacionados dentro del orógeno Ross del Cámbrico-Ordovícico, así como el ambiente de margen pasivo durante el Silúrico y el Devónico que indica que la sección inferior del Supergrupo Beacon de Antártida se corresponde con la Formación Sierra Grande de Patagonia. Estos datos muestran que el terreno Patagonia podría haber estado situado como el margen conjugado de las Montañas Trasantárticas desde el sur de la Tierra Victoria hasta las Montañas Pensacola. El rifting de Patagonia de Antártida y el inicio de la subducción a lo largo del oeste de la Patagonia se correlacionan entre diferentes terrenos mostrando una evolución coherente y robusta a lo largo del Paleozoico temprano entre estos bloques. El amalgamiento final de la Patagonia con el Gondwana Occidental se produjo en el Paleozoico tardío, pero no es analizado en la presente contribución.Fil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos ; ArgentinaFil: Naipauer, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos ; Argentin
Patagonia: where does it come from?
Based on the recent finding of archeocyathids in molassic middle Cambrian to Early Ordovician age-sequences of northern Patagonia the relationships between this southern part of South America and East Antarctica need to be re-examined. The early Cambrian age of the archeocyathids, and their derivation from the Shackleton Limestones, open several alternatives that are evaluated based on the lithology and the U-Pb zircon ages of the different metamorphic sequences of Patagonia and the Transantarctic Mountains. Based on these data, it is proposed that the Somuncurá Massif of northern Patagonia is the conjugate margin of the Pensacola Mountains in East Antarctica. The main episodes of deformation within the Cambrian-Ordovician Ross Orogeny are correlated, as well as the passive margin setting during the Silurian-Devonian, which indicate that the lower section of the Beacon Supergroup of Antarctica corresponds to the Sierra Grande Formation in Patagonia. These facts show that the Patagonian terrane may have been situated as the conjugate margin of the Transantarctic Mountains from Southern Victoria Land to the Pensacola Mountains. The rifting of Patagonia from Antarctica and the beginning of subduction along western Patagonia, are correlated among different terranes, showing a robust coherent evolution through early Paleozoic times among these blocks. The final amalgamation of Patagonia with Western Gondwana occurred in late Paleozoic times, but is not analyzed in the present contribution.Sobre la base de hallazgos recientes de arqueociátidos en depósitos molásicos de edad cámbrica media a ordovícica temprana del norte de la Patagonia, las relaciones entre esta parte del sur de Sudamérica y Antártida Oriental necesitan ser reexaminadas. La edad cámbrica temprana de los arqueociátidos y su derivación de las Calizas Shackleton abren varias alternativas que son evaluadas sobre la base de la litología y las edades U-Pb en circones de diferentes secuencias metamórficas de la Patagonia y de las Montañas Trasantárticas. Sobre la base de estos datos se propone que el Macizo de Somuncurá del norte de la Patagonia fue el margen conjugado de las Montañas Pensacola de Antártida Oriental. Los episodios principales de deformación son correlacionados dentro del orógeno Ross del Cámbrico-Ordovícico, así como el ambiente de margen pasivo durante el Silúrico y el Devónico que indica que la sección inferior del Supergrupo Beacon de Antártida se corresponde con la Formación Sierra Grande de Patagonia. Estos datos muestran que el terreno Patagonia podría haber estado situado como el margen conjugado de las Montañas Trasantárticas desde el sur de la Tierra Victoria hasta las Montañas Pensacola. El rifting de Patagonia de Antártida y el inicio de la subducción a lo largo del oeste de la Patagonia se correlacionan entre diferentes terrenos mostrando una evolución coherente y robusta a lo largo del Paleozoico temprano entre estos bloques. El amalgamiento final de la Patagonia con el Gondwana Occidental se produjo en el Paleozoico tardío, pero no es analizado en la presente contribución
Late Cenozoic contractional evolution of the current arc-volcanic region along the southern Central Andes (35°20′S)
The Andean internal zone records deformation, uplift and erosion that serve as proxies of variations on mountain building dynamics. Hence, the study of this region would give keys to understand the factors controlling the orogenic evolution. Structural, stratigraphic and geochronological data in the Andean internal zone at 35°20′S evidence that this region has only underwent contractional deformation since the late Miocene up to present, differing from coeval Pleistocene extensional tectonics affecting the retro-arc. Contractional deformation was characterized by the development of a piggy-back basin in the latest Miocene filled by synorogenic deposits. Afterward, an out-of-sequence thrusting event affected the region since at least the Pliocene until the Present. Shortening in the inner part of the Andean orogen would be favored by both the high orthogonality of the out-sequence structures with respect to the plate convergence vector and by the minor resistance to shortening produced by the southward decrease of the orogen height and by the removal of material via erosion of the uplifted mountain belt. In contrast, oblique structures, as those described farther north, accommodate strike-slip displacement. Likewise, we propose that erosion from the inner orogen favored the prolongation of the out-of-sequence thrusting event until the Present, differing from the situation north of the 34°S where this event ended by the Pliocene.Fil: Tapia, Felipe. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Farías, Marcelo. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología; ChileFil: Naipauer, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos; ArgentinaFil: Puratich, Jacqueline. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología; Chil
Geochemistry of Precordillera serpentinites, western Argentina : evidence for multistage hydrothermal alteration and tectonic implications for the Neoproterozoic-early Paleozoic
Serpentinites are a powerful tool to evaluate mantle composition and subsequent alteration processes during their tectonic emplacement. Exposures of this type of rocks can be found in the Argentine Precordillera (Cuyania terrane) and Frontal Cordillera, both located in central-western Argentina, within the Central Andes. In these regions a Neoproterozoic to Devonian mafic-ultramafic belt composed of serpentinites, metabasaltic dikes/sills, pillow lavas (with an Enriched to Normal Mid-Ocean Ridge Basalts (E- to N-MORB) geochemical signature) and mafic granulites crop out, spatially associated with marine metasedimentary rocks. The serpentinite bodies consist of lizardite/chrysotile+brucite+magnetite, with scarce pentlandite and anhedral reddish-brown Cr-spinel (picotite, pleonaste and spinel sensu stricto) as relict magmatic phases. The original peridotites were moderately-depleted harzburgites (ultramafic cumulates) with an intermediate chemical signature between a mid-ocean ridge and an arc-related ophiolite. Whole-rock Rare Earth Elements (REE) patterns of serpentinites exhibit enriched REE patterns ((La/Yb)CN=13-59) regarding CI chondrite with positive Eu anomalies. These features are the result of an interaction between hydrothermal fluid and serpentinites, in which moderate temperature (350º-400ºC), CO2-rich, mildly basic hydrothermal fluid was involved and was responsible for the addition of Ca, Sr and REE to serpentinites. The presence of listvenites (silica-carbonate rocks) in the serpentinite margins allow us to infer another fluid metasomatism, where lowtemperatures (<250ºC), highly-oxidized, highly-acid fluid lead to the precipitation of silica. The association of these metasomatized serpentinite bodies with neoproterozoic continental margin sucessions and MORB magmatism at the suture zone of the Cuyania and Chilenia terranes suggests the development of an oceanic basin between them during the Neoproterozoic-early Paleozoic
High-precision U-Pb ages in the early Tithonian to early Berriasian and implications for the numerical age of the Jurassic-Cretaceous boundary
The numerical age of the Jurassic-Cretaceous boundary has been controversial and difficult to determine. In this study, we present high-precision U-Pb geochronological data around the Jurassic-Cretaceous boundary in two distinct sections from different sedimentary basins: the Las Loicas, Neuquén Basin, Argentina, and the Mazatepec, Sierra Madre Oriental, Mexico. These two sections contain primary and secondary fossiliferous markers for the boundary as well as interbedded volcanic ash horizons, allowing researchers to obtain new radioisotopic dates in the late Tithonian and early Berriasian. We also present the first age determinations in the early Tithonian and tentatively propose a minimum duration for the stage as a cross-check for our ages in the early Berriasian. Given our radioisotopic ages in the early Tithonian to early Berriasian, we discuss implications for the numerical age of the boundary.Fil: Lena, Luis. Universidad de Ginebra; SuizaFil: López Martínez, Rafael. Universidad Nacional Autónoma de México; MéxicoFil: Lescano, Marina Aurora. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Aguirre-Urreta, Maria Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Concheyro, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Vennari, Verónica Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Naipauer, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Samankassou, Elias. Universidad de Ginebra; SuizaFil: Pimentel, Márcio. Universidade do Brasília; BrasilFil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Schaltegger, Urs. Universidad de Ginebra; Suiz
Strontium isotopic composition from Northeast Patagonia: Preliminary results
Se estudió la composición isotópica de estroncio de rocas calcáreas de unidades del Noreste patagónico. Incluye, a) mármoles de Pailemán (de dudosa pertenencia a la Formación El Jagüelito), valor medio de 87Sr/86Sr 0,707354 ± 0,000113; b) mármoles de Estancia La Auriciana (Complejo Mina Gonzalito), valor medio de 87Sr/86Sr 0,708730 ± 0,000285; c) clastos de calizas con arqueociátidos de un metaconglomerado de la Formación El Jagüelito en las proximidades de Sierra Grande, valor medio de 87Sr/86Sr 0,710605 ± 0,000118. El cotejo con la curva estándar de variación de 87Sr/86Sr en los mares en función del tiempo, ubica con mayor antigüedad a los mármoles de Pailemán (ca. 625 Ma), con una edad de ca. 550-510 Ma a los mármoles de Estancia La Auriciana y en el Cámbrico a las calizas de los clastos del metaconglomerado de Sierra Grande.We have carried out measurements of strontium isotopic compositions of carbonate units from northeastern Patagonia. The rock units included in the study are: a) Pailemán marble, with questionable belonging to El Jagüelito Formation, and mean 87Sr/86Sr value of 0.707354 ± 0.000113; b) marbles from estancia La Auriciana, Mina Gonzalito Complex, with mean 87Sr/86Sr value of 0.708730 ± 0.000285; c) archaeocyathan limestone clasts from a metaconglomerate layer of El Jagüelito Formation in the Sierra Grande area, with mean 87Sr/86Sr value of 0.710605 ± 0.000118. Comparison of these data with the global 87Sr/86Sr evolution curve suggests that the Pailemán marble is the oldest (ca. 625 Ma), followed by the estancia La Auriciana marbles (ca. 550-510 Ma), while the archeocyathan limestone clasts from Sierra Grande area are Cambrian.Fil: Varela, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Geológicas. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Gonzalez, Pablo Diego. Universidad Nacional de Rio Negro. Sede Alto Valle. Instituto de Investigaciones En Paleobiologia y Geologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Philipp, Ruy. Universidade Federal Do Rio Grande Do Sul; BrasilFil: Sato, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Geológicas. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: González, Santiago Nicolás. Universidad Nacional de Rio Negro. Sede Alto Valle. Instituto de Investigaciones En Paleobiologia y Geologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Greco, Gerson Alan. Universidad Nacional de Rio Negro. Sede Alto Valle. Instituto de Investigaciones En Paleobiologia y Geologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Naipauer, Maximiliano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología. Laboratorio de Tectónica Andina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Patagonia: where does it come from?
Based on the recent finding of archeocyathids in molassic middle Cambrian to Early Ordovician age-sequences of northern Patagonia the relationships between this southern part of South America and East Antarctica need to be re-examined. The early Cambrian age of the archeocyathids, and their derivation from the Shackleton Limestones, open several alternatives that are evaluated based on the lithology and the U-Pb zircon ages of the different metamorphic sequences of Patagonia and the Transantarctic Mountains. Based on these data, it is proposed that the Somuncurá Massif of northern Patagonia is the conjugate margin of the Pensacola Mountains in East Antarctica. The main episodes of deformation within the Cambrian-Ordovician Ross Orogeny are correlated, as well as the passive margin setting during the Silurian-Devonian, which indicate that the lower section of the Beacon Supergroup of Antarctica corresponds to the Sierra Grande Formation in Patagonia. These facts show that the Patagonian terrane may have been situated as the conjugate margin of the Transantarctic Mountains from Southern Victoria Land to the Pensacola Mountains. The rifting of Patagonia from Antarctica and the beginning of subduction along western Patagonia, are correlated among different terranes, showing a robust coherent evolution through early Paleozoic times among these blocks. The final amalgamation of Patagonia with Western Gondwana occurred in late Paleozoic times, but is not analyzed in the present contribution.Sobre la base de hallazgos recientes de arqueociátidos en depósitos molásicos de edad cámbrica media a ordovícica temprana del norte de la Patagonia, las relaciones entre esta parte del sur de Sudamérica y Antártida Oriental necesitan ser reexaminadas. La edad cámbrica temprana de los arqueociátidos y su derivación de las Calizas Shackleton abren varias alternativas que son evaluadas sobre la base de la litología y las edades U-Pb en circones de diferentes secuencias metamórficas de la Patagonia y de las Montañas Trasantárticas. Sobre la base de estos datos se propone que el Macizo de Somuncurá del norte de la Patagonia fue el margen conjugado de las Montañas Pensacola de Antártida Oriental. Los episodios principales de deformación son correlacionados dentro del orógeno Ross del Cámbrico-Ordovícico, así como el ambiente de margen pasivo durante el Silúrico y el Devónico que indica que la sección inferior del Supergrupo Beacon de Antártida se corresponde con la Formación Sierra Grande de Patagonia. Estos datos muestran que el terreno Patagonia podría haber estado situado como el margen conjugado de las Montañas Trasantárticas desde el sur de la Tierra Victoria hasta las Montañas Pensacola. El rifting de Patagonia de Antártida y el inicio de la subducción a lo largo del oeste de la Patagonia se correlacionan entre diferentes terrenos mostrando una evolución coherente y robusta a lo largo del Paleozoico temprano entre estos bloques. El amalgamiento final de la Patagonia con el Gondwana Occidental se produjo en el Paleozoico tardío, pero no es analizado en la presente contribución.Fil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos ; ArgentinaFil: Naipauer, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos ; Argentin
Filling the Gap: New Precise Early Cretaceous Radioisotopic Ages from the Andes
Two tuffs in the Lower Cretaceous Agrio Formation, Neuquén Basin, provided U–Pb zircon radioisotopic ages of 129.09 ± 0.16 Ma and 127.42 ± 0.15 Ma. Both horizons are well constrained biostratigraphically by ammonites and nannofossils and can be correlated with the ‘standard’ sequence of the Mediterranean Province. The lower horizon is very close to the base of the Upper Hauterivian and the upper horizon to the Hauterivian/Barremian boundary, indicating that the former lies at c. 129.5 Ma and the latter at c. 127 Ma. These new radioisotopic ages fill a gap of over 8 million years in the numerical calibration of the current global Early Cretaceous geological time scale
The Malvinas (Falkland) Plateau derived from Africa?: Constraints for its tectonic evolution
The latest studies on the tectonic evolution of the Malvinas (Falkland) Islands and their adjacent continental plateau further east are analyzed to assess a long controversy regarding the origin of these islands. Although there has been a controversy for several decades on this subject, new technologies and exploratory drilling have brought new data, however the debate of the geological evolution of this area remains open. The two dominant hypotheses are analyzed by assessing the eventual collision between the islands and the South American continent, the presence of a large transcontinental fault such as Gastre, the potential 180º rotation of the Malvinas Islands, and the occurrence of a mega-decollement with opposite vergence. These hypotheses are contrasted with the processes that have occurred in Patagonia, especially those based on the new isotopic data on the Maurice Ewing Bank at the eastern end of the Malvinas Plateau, and the current knowledge of the adjacent Malvinas Basin. The new data highlights the inconsistencies of certain models that proposed these islands migrated from the eastern African coasts near Natal, to their current position and rotated 180º on a vertical axis. The new observations are consolidating the hypothesis that postulates that the islands have been part of the South American continent since before the Paleozoic.Fil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Chemale, Farid. Universidad de Vale do Rio dos Sinos; BrasilFil: Lovecchio, Juan Pablo. Yacimiento Petroliferos Fiscal S.a.; ArgentinaFil: Naipauer, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotópica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; Argentin
Nuevo perfil sedimentario de la formación la manga (calloviano-oxfordiano) en el Valle del Río de los Patos, Provincia de San Juan
El perfil tiene un espesor total de 30,9 m en los que se relevaron litologías, estructuras, morfología, potencia y relaciones estratigráficas delos bancos. Se reconocieron 6 microfacies (Mf1-6), Mf1, grainstones oolíticos, con intraclastos, peloides, pisoides, cortoides, y bioclastos (ostreidos y equinodermos); Mf2,wackestones/packstones micríticos conpeloides, oolitas y bioclastos fragmentados indiferenciables cuya micritizaciónes generalizada; Mf3, mudstonesmicríticos laminados de posible origen microbiano; Mf4, brechasintraclásticas de Mf3 con matriz micrítica; Mf5, idéntica a Mf3, pero afectada por disolución y precipitación de calcita y yeso en venillas; Mf6,Framestone domal con 6 m dediámetro y 1,80 m de altura de bivalvos ostreidos. Estas se agrupan en 3 asociaciones de facies, (Af1-3), Af1, alternancia de Mf1 y Mf2,representando depósitos de barras oolíticas que migran por la acción de oleaje de tormenta (Mf1) y los depósitos posteriores en la rampa media y externa (Mf2);Af2, depósitos de planicie de mareas dentro de una rampa interna, representado en períodos de exposición subaérea y brechamiento (Mf3), y períodos de producción de calizas microbialíticas desarrolladas en un medio de moderada energía y poca profundidad (Mf4); Af3, representa a la zona que separa al lagoon del resto de la rampa interna, integrando depósitos dentro de un ambiente subácueo, protegido de la acción del oleaje (Mf5) por una estructura biogénica (Mf6) que se constituye en barrera a la acción del oleaje.El análisis sedimentológico de la columna estratigráfica permite reconstruir una sucesión iniciada en condiciones de moderada a baja energía y poca profundidad de la columna de agua, que evoluciona progresivamente hacia una ambiente depositacional de mayor profundidad en el que alternan períodos de baja energía con eventos de alta energía, tornándose gradualmente más potentes los primeros. El momento de mayor profundidad está representado por un nivel desedimentos finos que contiene amonoideos del género Perisphinctes (Ottosphinctes), biozona de Perisphinctes- Araucanites (Oxfordiano Temprano final a Oxfordiano Medio). A partir de esta superficie de máxima inundación, el arreglo de facies muestra una tendencia somerizante que culmina con depósitos de un ambiente protegido (lagoon) a los que suprayacen las evaporitas del evento de desecación de la cuenca (Formación Auquilco). Este perfil constituye uno de los más completos de la Formación La Manga en la Cuenca de La Ramada, donde escasean los perfiles de detalle y análisis sedimentológicos. Además,por su ubicación en un sector de excelente continuidad de la columna estratigráfica, por no presentar grandes estructuras de deformación y por contener un horizonte condensado de amonoideos, que permite asignar de manera inequívoca una edad bioestratigráfica, permitirán que este perfil pueda ser correlacionado con otros sectores de la cuenca donde también afloran depósitos de la Formación La Manga.Fil: Morel, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotópica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; ArgentinaFil: Hoqui, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Naipauer, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotópica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; ArgentinaXVIII Reunión Argentina de Sedimentología y IX Congreso Latinoamericano de SedimentologíaLa PlataArgentinaAsosiación Argentina de Sedimentologí
- …
