1,293 research outputs found

    SN 2008D: A Wolf-Rayet explosion through a thick wind

    Full text link
    Supernova (SN) 2008D/XRT 080109 is considered to be the only direct detection of a shock breakout from a regular SN to date. While a breakout interpretation was favored by several papers, inconsistencies remain between the observations and current SN shock breakout theory. Most notably, the duration of the luminous X-ray pulse is considerably longer than expected for a spherical breakout through the surface of a type Ibc SN progenitor, and the X-ray radiation features, mainly its flat spectrum and its luminosity evolution, are enigmatic. We apply a recently developed theoretical model for the observed radiation from a Wolf-Rayet SN exploding through a thick wind and show that it naturally explains all the observed features of SN 2008D X-ray emission, including the energetics, the spectrum and the detailed luminosity evolution. We find that the inferred progenitor and SN parameters are typical for an exploding Wolf-Rayet. A comparison of the wind density found at the breakout radius to the density at much larger radii, as inferred by late radio observations, suggests an enhanced mass loss rate taking effect about ten days or less prior to the SN explosion. This finding joins accumulating evidence for a possible late phase in the stellar evolution of massive stars, involving vigorous mass loss a short time before the SN explosion.Comment: 5 pages, 1 figure, submitted to apj

    Early GRB afterglow from a reverse shock as a tracer of the prompt gamma-ray light curve

    Get PDF
    We discuss the optical and radio early afterglow emission of the reverse shock that crosses a baryonic ejecta as it interacts with the external interstellar medium (ISM). We show that the peak of the optical flash divides the light curve of the reverse shock into two distinctive phases. The emission after the peak depends weakly on the initial conditions of the ejecta and therefore it can be used as an identifiable signature of a reverse shock emission. On the other hand, the emission before the optical peak is highly sensitive to the initial conditions and therefore can be used to investigate the initial hydrodynamic profile of the ejecta. In particular, if the prompt γ\gamma-ray emission results from internal shocks, the early reverse shock emission should resemble a smoothed version of the prompt γ\gamma-ray light curve.Comment: Submitted to Il Nuovo Cimento, proceedings of the 4th Workshop Gamma-Ray Bursts in the Afterglow Era, Rome, 18-22 October 200

    The Afterglows of Swift-era Gamma-ray Bursts. I. Comparing pre-Swift and Swift-era Long/Soft (Type II) GRB Optical Afterglows

    Get PDF
    We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to 2009 September, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in an earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A, and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host-galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z = 1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, are weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) is very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at 1 day after the GRB in the z = 1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without, reveals no indication that the former are statistically significantly more luminous. Furthermore, we propose the existence of an upper ceiling on afterglow luminosities and study the luminosity distribution at early times, which was not accessible before the advent of the Swift satellite. Most GRBs feature afterglows that are dominated by the forward shock from early times on. Finally, we present the first indications of a class of long GRBs, which form a bridge between the typical high-luminosity, high-redshift events and nearby low-luminosity events (which are also associated with spectroscopic supernovae) in terms of energetics and observed redshift distribution, indicating a continuous distribution overal

    Beaming of particles and synchrotron radiation in relativistic magnetic reconnection

    Full text link
    Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealised analytical models reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell (PIC) simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with isotropic electron velocity distribution in its rest frame, we find that the bulk motion of particles in X-points is similar to their Lorentz factor gamma, and the particles are beamed within about 5/gamma. On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropise after completing a full Larmor gyration and their radiation is not strongly beamed anymore. The radiation pattern at a given frequency depends on where the corresponding emitting electrons radiate their energy. Lower energy particles that cool slowly spend most of their time in the islands, and their radiation is not highly beamed. Only particles that quickly cool at the edge of the X-points generate a highly beamed fan-like radiation pattern. The radiation emerging from these fast cooling particles is above the burn-off limit (about 100 MeV in the overall rest frame of the reconnecting plasma.) This has significant implications for models of GRBs and AGNs that invoke beaming in that frame at much lower energies.Comment: 19 pages, 12 figures, accepted to Ap

    Physics of the saturation of particle acceleration in relativistic magnetic reconnection

    Full text link
    We investigate the saturation of particle acceleration in relativistic reconnection using two-dimensional particle-in-cell simulations at various magnetizations \sigma. We find that the particle energy spectrum produced in reconnection quickly saturates as a hard power law that cuts off at \gamma~4\sigma, confirming previous work. Using particle tracing, we find that particle acceleration by the reconnection electric field in X-points determines the shape of the particle energy spectrum. By analyzing the current sheet structure, we show that physical cause of saturation is the spontaneous formation of secondary magnetic islands that can disrupt particle acceleration. By comparing the size of acceleration regions to the typical distance between disruptive islands, we show that the maximum Lorentz factor produced in reconnection is \gamma ~ 5 \sigma, which is very close to what we find in our particle energy spectra. We also show that the dynamic range in Lorentz factor of the power law spectrum in reconnection is < 40. The hardness of the power law combined with its narrow dynamic range implies that relativistic reconnection is capable of producing the hard narrowband flares observed in the Crab Nebula but has difficulty producing the softer broadband prompt GRB emission.Comment: 12 pages; 10 figures; submitted to MNRA

    Time Scales in Long GRBs

    Full text link
    We analyze a sample of bright long bursts and find that the pulses duration have a lognormal distribution while the intervals between pulses have an excess of long intervals (relative to lognormal distribution). This excess can be explained by the existence of quiescent times, long periods with no signal above the background. The lognormal distribution of the intervals (excluding the quiescent times) is similar to the distribution of the pulses width. This result suggests that the quiescent times are made by a different mechanism than the rest of the intervals. It also suggests that the intervals (excluding the quiescent times) and the pulse width are connected to the same parameters of the source. We find that there is a correlation between a pulse width and the duration of the interval preceding it. There is a weaker, but still a significant, correlation between a pulse width and the interval following it. The significance of the correlation drops substantially when the intervals considered are not adjacent to the pulse.Comment: 5 pages, 8 figures, accepted for publication by MNRA
    corecore