4,281 research outputs found

    Controlled generation in example-based machine translation

    Get PDF
    The theme of controlled translation is currently in vogue in the area of MT. Recent research (Sch¨aler et al., 2003; Carl, 2003) hypothesises that EBMT systems are perhaps best suited to this challenging task. In this paper, we present an EBMT system where the generation of the target string is filtered by data written according to controlled language specifications. As far as we are aware, this is the only research available on this topic. In the field of controlled language applications, it is more usual to constrain the source language in this way rather than the target. We translate a small corpus of controlled English into French using the on-line MT system Logomedia, and seed the memories of our EBMT system with a set of automatically induced lexical resources using the Marker Hypothesis as a segmentation tool. We test our system on a large set of sentences extracted from a Sun Translation Memory, and provide both an automatic and a human evaluation. For comparative purposes, we also provide results for Logomedia itself

    Example-based controlled translation

    Get PDF
    The first research on integrating controlled language data in an Example-Based Machine Translation (EBMT) system was published in [Gough & Way, 2003]. We improve on their sub-sentential alignment algorithm to populate the system’s databases with more than six times as many potentially useful fragments. Together with two simple novel improvements—correcting mistranslations in the lexicon, and allowing multiple translations in the lexicon—translation quality improves considerably when target language translations are constrained. We also develop the first EBMT system which attempts to filter the source language data using controlled language specifications. We provide detailed automatic and human evaluations of a number of experiments carried out to test the quality of the system. We observe that our system outperforms Logomedia in a number of tests. Finally, despite conflicting results from different automatic evaluation metrics, we observe a preference for controlling the source data rather than the target translations

    A numerical study of bubble growing during saturated and sub-cooled flow boiling in micro channels

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.A CFD study of bubbles growing in a mini-channel with a diameter of 0.64 mm has been done. Coupled level set and volume of fluid (CLSVOF) method is applied to capture the two phase interface. Geo-reconstruct method is used to re-construct the two-phase interface. A constant velocity inlet boundary with mass flux 335 /2 and a heated boundary wall with constant heat flux (10/2 ) is applied. Both saturated and sub-cooled inlet condition are studied. The growth of bubbles and the transition of flow regime differs each other under these two conditions. Sub-cooling significantly lowers the bubble growth rate. However, it does not affect the heat transfer coefficient at the same level due to its complicated heat transfer mechanism

    Mechanics of blood flow in capillaries

    Get PDF
    This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.Blood is a concentrated suspension of red blood cells (RBCs). Motion and deformation of RBCs can be analyzed based on knowledge of their mechanical characteristics. Models for single-file motion of RBCs in capillaries yield predictions of apparent viscosity in good agreement with experimental results for diameters up to about 8 μm. In living microvessels, flow resistance is also strongly influenced by the presence of a ~ 1-micron layer of macromolecules bound to the inner lining of vessel walls, the endothelial surface layer. Two-dimensional simulations, in which each RBC is represented as a set of interconnected viscoelastic elements, predict that off-center RBCs take asymmetric shapes and drift toward the center-line. Predicted trajectories agree closely with observations in microvessels of the rat mesentery. Realistic simulation of multiple interacting RBCs in microvessels remains as a major challenge for future work.This work was supported by NIH Grant HL034555

    A second-order slip model for arbitrary accomodation at the wall

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.We present a kinetic-theory derivation of second-order slip boundary conditions for a plane isothermal pressure driven gas owing through a microchannel. In the proposed approach, the distribution function is expanded in terms of orthogonal polynomials and the system of moment equations in the expansion coefficients is analytically solved. The velocity slip coefficients, as well as their Knudsen layer corrections, are obtained by evaluating the solution in the near continuum limit. In comparison with other methods, the present approach is accurate and easy to implement. The results are presented for the Bhatnagar-Gross-Krook-Welander (BGKW) kinetic model equation and Maxwell's boundary conditions, but can be extended to more general collision integral and different scattering kernels.Fondazione Cariplo within the framework of the project Surface interactions in micro/nano device

    Coherent microscopy and optical coherence tomography for biomedical applications

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.In recent years many new methods of 3D optical imaging have been introduced that are applicable to the study of micro- and nano-scale flows. Coherent microscopy and optical coherence tomography join more established methods such as coherence scanning interferometry and confocal microscopy. These methods are very closely related and, using linear systems theory, can be compared in terms of their point spread and transfer functions. This paper introduces linear theory, demonstrates the main differences between the methods and discusses their use in micro- and nano-scale flow measurement. It is shown that coherent microscopy is currently the only method capable of single shot recording and consequently simultaneous whole-field flow measurement. Its use is limited to sparsely seeded flows however, such that individual particles can be identified. The other techniques provide increased 3D discrimination. Using a large numerical aperture, confocal microscopy and coherence scanning interferometry provide the most detailed 3D images making use the additional information available when the object is illuminated with plane waves propagating at different angles. In contrast optical coherence tomography uses the information that is available when the object is illuminated with different wavelengths. It is shown that the fundamental difference between these approaches is that the lateral and axial resolutions are decoupled in OCT making the technique easily scalable. This and the development of modern tunable laser sources, make OCT the method of choice for many biomedical applications

    MicroRNA sensors

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.We have developed a technology for the profiling of miRNA expression in intact cells. The approach is based on sensor oligonucleotides, which upon entering the cell, bind specific miRNA targets, are cleaved as a result of this binding, and produce a fluorescent signal that is proportional to the abundance of the miRNA target. Specifically, the sensor oligonucleotides are completely complementary to a target miRNA species, are non-stabilized around the seed region (the region cleaved by the miRNA-RISC), and are labeled with a fluorescent dye and a quencher at their 5’- and 3’- end respectively. Upon entering the cell, these oligonucleotides engage the target miRNA by complementary base pairing. This leads to recruitment of the RNA induced silencing complex (RISC) to the duplex. The complex cleaves the sensor oligonucleotide and the miRNA is free to “catalyze” subsequent clevage reactions. The cleavage of the sensor oligo leads to separation between the dye and the quencher, and a resultant fluorescent enhancement that can be measured. We have demonstrated the feasibility of this method for the sensing of the pro-metastatic miRNA-10b in cell-free extracts and intact cells using human and murine breast adenocarcinoma cell lines. The miRNA epigenome represents a fundamental molecular regulator of metastasis. Consequently, developing tools to understand metastatic changes at the miRNA level can lead to the mapping out of a comprehensive and systematic atlas of cancer progression. The described technology is potentially transformative because it addresses this important issue. Furthermore, the technology has broad implications and can be utilized in any model system or clinical scenario to answer questions related to microRNA function. Specifically, the technology can help distinguish, assess, and/or monitor cancer stages and progression; aid the elucidation of basic mechanisms underlying cancer initiation and progression; facilitate early cancer detection and/or cancer risk assessment; and facilitate/accelerate the process of drug discovery

    Kinetic calculation of rarefied gaseous flows in long tapered rectangular microchannels

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Gaseous flows in microsystems have attracted considerable attention in fluid dynamic communities over the last few years. When the size of the device is in the range of microns, the molecular mean free path becomes comparable with the device size, and the details of the molecular interactions need to be taken into account. The proper description of such microflows requires the consideration of the velocity distribution function of the molecules and kinetic equations. The scope of the present paper is to discuss the determination of the behavior of pressure driven rarefied gas flows in microchannels at the kinetic level. As a new application of the methodology, preliminary results are presented for pressure driven flows of single gases through long rectangular tapered microchannels, which have constant widths but varying depths along the axis of the channel. The kinetic calculation is based on the solution of the linearized Bhatnagar-Gross- Krook (BGK) equation and refers to the determination of the mass flow rate through the channel and the axial distribution of the pressure. The BGK equation is solved by the discrete velocity method. It is shown that the mass flow rate exhibits the diodicity effect, which means that the flow rate depends on the orientation of the channel. If the gas flows from the larger cross section towards the smaller one, the flow rate is larger than in the opposite situation. The pressure profile strongly varies near the small cross section, and it has a quite different character than in the case of channels with uniform cross sections. The tapered microchannel might be useful for separating the different gaseous components in engineering applications

    Multiscale modeling of physical and biological systems

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute

    Stretching of a capillary bridge featuring a particle-laden interface: particle sedimentation in the interface

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Colloidal particles adsorbed at fluid interfaces can be subject to external forces, for instance of magnetic, electrical, or gravitational origin. To develop a tool that will enable to study the effect of these forces on interfacial particle transport, we derive a transport equation for the surface particle concentration using the method of volume averaging. This equation is specialised to the problem of particle sedimentation induced by external forces on an axisymmetric capillary bridge stretched with assigned constant velocity between two circular plates. The equation for the interfacial concentration is one-way coupled to the unsteady Stokes equation in the capillary bridge, and solved in the thin-thread approximation, in the limit of small capillary and Bond numbers and for moderate area fractions. We find that owing to the competition between particle settling in one direction, and fluid velocity in the opposite direction, a concentration peak develops between the neck region and the moving plate. Hydrodynamic interactions, modelled through a concentration-dependent hindrance function, have the effect of steepening the shock-like concentration gradients that develop in the interface
    corecore