12 research outputs found
Recommended from our members
The role of the pod in seed development: strategies for manipulating yield
Pods play a key role in encapsulating the developing seeds and protecting them from pests and pathogens. In addition to this protective function, it has been shown that the photosynthetically active pod wall contributes assimilates and nutrients to fuel seed growth. Recent work has revealed that signals originating from the pod may also act to coordinate grain filling and regulate the reallocation of reserves from damaged seeds to those that have retained viability. In this review we consider the evidence that pods can regulate seed growth and maturation, particularly in members of the Brassicaceae family, and explore how the timing and duration of pod development might be manipulated to enhance either the quantity of crop yield or its nutritional properties
Challenges to implementing environmental-DNA monitoring in Namibia
By identifying fragments of DNA in the environment, eDNA approaches present a promising tool for monitoring biodiversity in a cost-effective way. This is particularly pertinent for countries where traditional morphological monitoring has been sparse. The first step to realising the potential of eDNA is to develop methodologies that are adapted to local conditions. Here, we test field and laboratory eDNA protocols (aqueous and sediment samples) in a range of semi-arid ecosystems in Namibia. We successfully gathered eDNA data on a broad suite of organisms at multiple trophic levels (including algae, invertebrates and bacteria) but identified two key challenges to the implementation of eDNA methods in the region: 1) high turbidity requires a tailored sampling technique and 2) identification of taxa by eDNA methods is currently constrained by a lack of reference data. We hope this work will guide the deployment of eDNA biomonitoring in the arid ecosystems of Namibia and neighbouring countries
Spatial and temporal expression of the response regulators ARR22 and ARR24 in Arabidopsis thaliana
Pathways to more inclusive and effective black rhino conservation: Insights from a decade of design and delivery in NW Namibia
Generating evidence from both successes and failures of conservation interventions is critical for improving our capacity to learn how to design, deliver, evaluate and improve such initiatives. This is particularly imperative for highly‐threatened and highly‐valued species such as Critically Endangered black rhinoceros, which attract large investments of resources and present a high risk of extinction. The systematic generation and assessment of evidence on what methods and mechanisms work, which do not, and under what circumstances is often poorly described and implemented. We present a synthesis of learnings from more than a decade of designing, delivering, evaluating and improving community‐based ranger programs in north‐west Namibia. We illustrate how adopting an iterative process tracing methodology to generate evidence that enables teams to track and improve their performance over time can provide a foundation for a collective knowledge bank, an enhanced learning process, and tangible conservation outcomes. We illustrate how harnessing the values of key local participant groups in program design can lead to delivering measurable intermediate results along pathways for engaging local leadership, empowering rangers, and creating income‐generating opportunities that, in our case, contributed to a more than 90% reduction in illegal hunting of black rhinoceros. These results manifest with minimal use of conventional militarized law enforcement anti‐poaching mechanisms suggesting that, at least in our situation, investing resources into improving the alignment between the value local people attach to protecting rhinoceros and the ways in, and degree to, which a protection programme manifests these values, is an effective, ethical, cost‐efficient and socially just strategy. We offer lessons learned synthesized as a mnemonic to “LIVEN” up ranger program to be more locally inclusive and collaborative. Employing fit‐for‐purpose evaluation methodologies that are focused first and foremost upon internal team learning has become our guiding principle
Challenges to Implementing Environmental-DNA Monitoring in Namibia
By identifying fragments of DNA in the environment, eDNA approaches present a promising tool for monitoring biodiversity in a cost-effective way. This is particularly pertinent for countries where traditional morphological monitoring has been sparse. The first step to realising the potential of eDNA is to develop methodologies that are adapted to local conditions. Here, we test field and laboratory eDNA protocols (aqueous and sediment samples) in a range of semi-arid ecosystems in Namibia. We successfully gathered eDNA data on a broad suite of organisms at multiple trophic levels (including algae, invertebrates and bacteria) but identified two key challenges to the implementation of eDNA methods in the region: 1) high turbidity requires a tailored sampling technique and 2) identification of taxa by eDNA methods is currently constrained by a lack of reference data. We hope this work will guide the deployment of eDNA biomonitoring in the arid ecosystems of Namibia and neighbouring countries.</jats:p
Reduction in seabird mortality in Namibian fisheries following the introduction of bycatch regulation
Table1_Challenges to Implementing Environmental-DNA Monitoring in Namibia.docx
By identifying fragments of DNA in the environment, eDNA approaches present a promising tool for monitoring biodiversity in a cost-effective way. This is particularly pertinent for countries where traditional morphological monitoring has been sparse. The first step to realising the potential of eDNA is to develop methodologies that are adapted to local conditions. Here, we test field and laboratory eDNA protocols (aqueous and sediment samples) in a range of semi-arid ecosystems in Namibia. We successfully gathered eDNA data on a broad suite of organisms at multiple trophic levels (including algae, invertebrates and bacteria) but identified two key challenges to the implementation of eDNA methods in the region: 1) high turbidity requires a tailored sampling technique and 2) identification of taxa by eDNA methods is currently constrained by a lack of reference data. We hope this work will guide the deployment of eDNA biomonitoring in the arid ecosystems of Namibia and neighbouring countries.</p
Table2_Challenges to Implementing Environmental-DNA Monitoring in Namibia.docx
By identifying fragments of DNA in the environment, eDNA approaches present a promising tool for monitoring biodiversity in a cost-effective way. This is particularly pertinent for countries where traditional morphological monitoring has been sparse. The first step to realising the potential of eDNA is to develop methodologies that are adapted to local conditions. Here, we test field and laboratory eDNA protocols (aqueous and sediment samples) in a range of semi-arid ecosystems in Namibia. We successfully gathered eDNA data on a broad suite of organisms at multiple trophic levels (including algae, invertebrates and bacteria) but identified two key challenges to the implementation of eDNA methods in the region: 1) high turbidity requires a tailored sampling technique and 2) identification of taxa by eDNA methods is currently constrained by a lack of reference data. We hope this work will guide the deployment of eDNA biomonitoring in the arid ecosystems of Namibia and neighbouring countries.</p
Image1_Challenges to Implementing Environmental-DNA Monitoring in Namibia.tif
By identifying fragments of DNA in the environment, eDNA approaches present a promising tool for monitoring biodiversity in a cost-effective way. This is particularly pertinent for countries where traditional morphological monitoring has been sparse. The first step to realising the potential of eDNA is to develop methodologies that are adapted to local conditions. Here, we test field and laboratory eDNA protocols (aqueous and sediment samples) in a range of semi-arid ecosystems in Namibia. We successfully gathered eDNA data on a broad suite of organisms at multiple trophic levels (including algae, invertebrates and bacteria) but identified two key challenges to the implementation of eDNA methods in the region: 1) high turbidity requires a tailored sampling technique and 2) identification of taxa by eDNA methods is currently constrained by a lack of reference data. We hope this work will guide the deployment of eDNA biomonitoring in the arid ecosystems of Namibia and neighbouring countries.</p
Table3_Challenges to Implementing Environmental-DNA Monitoring in Namibia.docx
By identifying fragments of DNA in the environment, eDNA approaches present a promising tool for monitoring biodiversity in a cost-effective way. This is particularly pertinent for countries where traditional morphological monitoring has been sparse. The first step to realising the potential of eDNA is to develop methodologies that are adapted to local conditions. Here, we test field and laboratory eDNA protocols (aqueous and sediment samples) in a range of semi-arid ecosystems in Namibia. We successfully gathered eDNA data on a broad suite of organisms at multiple trophic levels (including algae, invertebrates and bacteria) but identified two key challenges to the implementation of eDNA methods in the region: 1) high turbidity requires a tailored sampling technique and 2) identification of taxa by eDNA methods is currently constrained by a lack of reference data. We hope this work will guide the deployment of eDNA biomonitoring in the arid ecosystems of Namibia and neighbouring countries.</p
