5,078 research outputs found

    The Impact of Foreign Investments on the Achievement of Economic Growth

    Get PDF
    This article deals with the analysis of the positive side of the foreign direct investments in the World´s economy. The importance of this research is derived from the significant role that can be played by foreign investments in industrialized and developing countries. Some countries are still hesitant to attract the foreign investments despite its human and physical potentialities. The foreign investments are mainly influenced by political and economical factors. Foreign direct investments to developing countries are growing very rapidly. In the past, these investments were limited to raw material sectors, nowadays the current investments involve more sectors than ever before. These investments have implications of trade and integration. The revival of foreign investments implies that the risks to private investments have been lowered mainly because of specific policy changes and of improvements of governance more generally. In this research we have mainly used the descriptive methods on the basis of data collection.Foreign direct investment, global economy, international economy, developing countries, multinational companies, economic growth., International Relations/Trade, Political Economy, GA, IN,

    A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks

    Full text link
    Over the last decade, Convolutional Neural Networks (CNN) saw a tremendous surge in performance. However, understanding what a network has learned still proves to be a challenging task. To remedy this unsatisfactory situation, a number of groups have recently proposed different methods to visualize the learned models. In this work we suggest a general taxonomy to classify and compare these methods, subdividing the literature into three main categories and providing researchers with a terminology to base their works on. Furthermore, we introduce the FeatureVis library for MatConvNet: an extendable, easy to use open source library for visualizing CNNs. It contains implementations from each of the three main classes of visualization methods and serves as a useful tool for an enhanced understanding of the features learned by intermediate layers, as well as for the analysis of why a network might fail for certain examples

    CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction

    Full text link
    Given the recent advances in depth prediction from Convolutional Neural Networks (CNNs), this paper investigates how predicted depth maps from a deep neural network can be deployed for accurate and dense monocular reconstruction. We propose a method where CNN-predicted dense depth maps are naturally fused together with depth measurements obtained from direct monocular SLAM. Our fusion scheme privileges depth prediction in image locations where monocular SLAM approaches tend to fail, e.g. along low-textured regions, and vice-versa. We demonstrate the use of depth prediction for estimating the absolute scale of the reconstruction, hence overcoming one of the major limitations of monocular SLAM. Finally, we propose a framework to efficiently fuse semantic labels, obtained from a single frame, with dense SLAM, yielding semantically coherent scene reconstruction from a single view. Evaluation results on two benchmark datasets show the robustness and accuracy of our approach.Comment: 10 pages, 6 figures, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, USA, June, 2017. The first two authors contribute equally to this pape

    Adversarial Semantic Scene Completion from a Single Depth Image

    Full text link
    We propose a method to reconstruct, complete and semantically label a 3D scene from a single input depth image. We improve the accuracy of the regressed semantic 3D maps by a novel architecture based on adversarial learning. In particular, we suggest using multiple adversarial loss terms that not only enforce realistic outputs with respect to the ground truth, but also an effective embedding of the internal features. This is done by correlating the latent features of the encoder working on partial 2.5D data with the latent features extracted from a variational 3D auto-encoder trained to reconstruct the complete semantic scene. In addition, differently from other approaches that operate entirely through 3D convolutions, at test time we retain the original 2.5D structure of the input during downsampling to improve the effectiveness of the internal representation of our model. We test our approach on the main benchmark datasets for semantic scene completion to qualitatively and quantitatively assess the effectiveness of our proposal.Comment: 2018 International Conference on 3D Vision (3DV
    corecore