34 research outputs found
Chandra X-ray spectroscopy of the focused wind in the Cygnus X-1 system III. Dipping in the low/hard state
We present an analysis of three Chandra High Energy Transmission Gratings
observations of the black hole binary Cyg X-1/HDE 226868 at different orbital
phases. The stellar wind that is powering the accretion in this system is
characterized by temperature and density inhomogeneities including structures,
or "clumps", of colder, more dense material embedded in the photoionized gas.
As these clumps pass our line of sight, absorption dips appear in the light
curve. We characterize the properties of the clumps through spectral changes
during various dip stages. Comparing the silicon and sulfur absorption line
regions (1.6-2.7 keV 7.7-4.6 {\AA}) in four levels of varying column
depth reveals the presence of lower ionization stages, i.e., colder or denser
material, in the deeper dip phases. The Doppler velocities of the lines are
roughly consistent within each observation, varying with the respective orbital
phase. This is consistent with the picture of a structure that consists of
differently ionized material, in which shells of material facing the black hole
shield the inner and back shells from the ionizing radiation. The variation of
the Doppler velocities compared to a toy model of the stellar wind, however,
does not allow us to pin down an exact location of the clump region in the
system. This result, as well as the asymmetric shape of the observed lines,
point at a picture of a complex wind structure.Comment: 19 pages, 15 figures, accepted for publication in A&
Dust and gas absorption in the high mass X-ray binary IGR J16318−4848
Context. With an absorption column density on the order of 10²⁴ cm⁻², IGR J16318−4848 is one of the most extreme cases of a highly obscured high mass X-ray binary. In addition to the overall continuum absorption, the source spectrum exhibits a strong iron and nickel fluorescence line complex at 6.4 keV. Previous empirical modeling of these features and comparison with radiative transfer simulations raised questions about the structure and covering fraction of the absorber and the profile of the fluorescence lines.
Aims. We aim at a self-consistent description of the continuum absorption, the absorption edges, and the fluorescence lines to constrain the properties of the absorbing material, such as ionization structure and geometry. We further investigate the effects of dust absorption on the observed spectra and the possibility of fluorescence emission from dust grains.
Methods. We used XMM-Newton and NuSTAR spectra to first empirically constrain the incident continuum and fluorescence lines. Next we used XSTAR to construct a customized photoionization model where we vary the ionization parameter, column density, and covering fraction. In the third step we modeled the absorption and fluorescence in a dusty olivine absorber and employed both a simple analytical model for the fluorescence line emission and a Monte Carlo simulation of radiative transfer that generates line fluxes, which are very close to the observational data.
Results. Our empirical spectral modeling is in agreement with previous works. Our second model, the single gas absorber does not describe the observational data. In particular, irrespective of the ionization state or column density of the absorber, a much higher covering fraction than previously estimated is needed to produce the strong fluorescence lines and the large continuum absorption. A dusty, spherical absorber (modeled as consisting of olivine dust, although the nature of dust cannot be constrained) is able to produce the observed continuum absorption and edges.
Conclusions. A dense, dusty absorber in the direct vicinity of the source consisting of dust offers a consistent description of both the strong continuum absorption and the strong emission features in the X-ray spectrum of IGR J16318−4848. In particular, for low optical depth of individual grains, which is the case for typical volume densities and grain size distribution models, the dust will contribute significantly to the fluorescence emission
Dust and gas absorption in the high mass X-ray binary IGR J16318−4848
Context. With an absorption column density on the order of 10²⁴ cm⁻², IGR J16318−4848 is one of the most extreme cases of a highly obscured high mass X-ray binary. In addition to the overall continuum absorption, the source spectrum exhibits a strong iron and nickel fluorescence line complex at 6.4 keV. Previous empirical modeling of these features and comparison with radiative transfer simulations raised questions about the structure and covering fraction of the absorber and the profile of the fluorescence lines.
Aims. We aim at a self-consistent description of the continuum absorption, the absorption edges, and the fluorescence lines to constrain the properties of the absorbing material, such as ionization structure and geometry. We further investigate the effects of dust absorption on the observed spectra and the possibility of fluorescence emission from dust grains.
Methods. We used XMM-Newton and NuSTAR spectra to first empirically constrain the incident continuum and fluorescence lines. Next we used XSTAR to construct a customized photoionization model where we vary the ionization parameter, column density, and covering fraction. In the third step we modeled the absorption and fluorescence in a dusty olivine absorber and employed both a simple analytical model for the fluorescence line emission and a Monte Carlo simulation of radiative transfer that generates line fluxes, which are very close to the observational data.
Results. Our empirical spectral modeling is in agreement with previous works. Our second model, the single gas absorber does not describe the observational data. In particular, irrespective of the ionization state or column density of the absorber, a much higher covering fraction than previously estimated is needed to produce the strong fluorescence lines and the large continuum absorption. A dusty, spherical absorber (modeled as consisting of olivine dust, although the nature of dust cannot be constrained) is able to produce the observed continuum absorption and edges.
Conclusions. A dense, dusty absorber in the direct vicinity of the source consisting of dust offers a consistent description of both the strong continuum absorption and the strong emission features in the X-ray spectrum of IGR J16318−4848. In particular, for low optical depth of individual grains, which is the case for typical volume densities and grain size distribution models, the dust will contribute significantly to the fluorescence emission
X-ray spectral and flux variability of the microquasar GRS 1758-258 on timescales from weeks to years
We present the spectral and timing evolution of the persistent black hole
X-ray binary GRS 1758-258 based on almost 12 years of observations using the
Rossi X-ray Timing Explorer Proportional Counter Array. While the source was
predominantly found in the hard state during this time, it entered the
thermally dominated soft state seven times. In the soft state GRS 1758-258
shows a strong decline in flux above 3 keV rather than the pivoting flux around
10 keV more commonly shown by black hole transients. In its 3-20 keV hardness
intensity diagram, GRS 1758-258 shows a hysteresis of hard and soft state
fluxes typical for transient sources in outburst. The RXTE-PCA and RXTE-ASM
long-term light curves do not show any orbital modulations in the range of 2 to
30 d. However, in the dynamic power spectra significant peaks drift between
18.47d and 18.04d for the PCA data, while less significant signatures between
19d and 20d are seen for the ASM data as well as for the Swift/BAT data. We
discuss different models for the hysteresis behavior during state transitions
as well as possibilities for the origin of the long term variation in the
context of a warped accretion disk.Comment: 12 pages, 13 figures, accepted by Astronomy & Astrophysic
Detection of the Orbital Modulation of Fe K α Fluorescence Emission in Centaurus X-3 Using the High-resolution Spectrometer Resolve on board XRISM
The Fe Kα fluorescence line emission in X-ray spectra is a powerful diagnostic tool for various astrophysical objects to reveal the distribution of cold matter around photoionizing sources. The advent of the X-ray microcalorimeter on board the XRISM satellite will bring new constraints on the emission line. We present one of the first such results for the high-mass X-ray binary Centaurus X-3, which is composed of an O-type star and a neutron star (NS). We conducted a 155 ks observation covering an entire binary orbit. A weak Fe Kα line was detected in all orbital phases at an equivalent width (EW) of 10–20 eV. We found for the first time that its radial velocity (RV) is sinusoidally modulated by the orbital phase. The RV amplitude is 248 ± 13 km s−1, which is significantly smaller than the value (391 km s−1) expected if the emission is from the NS surface, but is consistent if the emission takes place at the O star surface. We discuss several possibilities of the line production site, including the NS surface, O star surface, O star wind, and accretion stream from the O star to the NS. We ran radiative transfer calculation for some of them assuming spherically symmetric density and velocity profiles and an isotropic distribution of X-ray emission from the NS. None of them explains the observed EW and velocity dispersion dependence on the orbital phase, suggesting that more elaborated modeling is needed. In other words, the present observational results have the capability to constrain deviations from these assumptions
Kinematic Evidence for Bipolar Ejecta Flows in the Galactic Supernova Remnant W49B
W49B is a unique Galactic supernova remnant with centrally peaked, “bar”-like ejecta distribution, which was once considered evidence for a hypernova origin that resulted in a bipolar ejection of the stellar core. However, chemical abundance measurements contradict this interpretation. Closely connected to the morphology of the ejecta is its velocity distribution, which provides critical details for understanding the explosion mechanism. We report the first ever observational constraint on the kinematics of the ejecta in W49B using the Resolve microcalorimeter spectrometer on the X-ray Imaging and Spectroscopy Mission (XRISM). Using XRISM/Resolve, we measured the line-of-sight velocity traced by the Fe Heα emission, which is the brightest feature in the Resolve spectrum, to vary by ±300 km s−1 with a smooth east-to-west gradient of a few tens of kilometers per second per parsec along the major axis. Similar trends in the line-of-sight velocity structure were found for other Fe-group elements Cr and Mn, traced by the Heα emission, and also for intermediate-mass elements Si, S, Ar, and Ca, traced by the Lyα emission. The discovery of the east–west gradient in the line-of-sight velocity, together with the absence of a twin-peaked line profile or enhanced broadening in the central region, clearly rejects the equatorially expanding disk model. In contrast, the observed velocity structure suggests bipolar flows reminiscent of a bipolar explosion scenario. An alternative scenario would be a collimation of the ejecta by an elongated cavity sculpted by bipolar stellar winds
Estimating the Prevalence and Genetic Risk Mechanisms of ARFID in a Large Autism Cohort
This study is the first genetically-informed investigation of avoidant/restrictive food intake disorder (ARFID), an eating disorder that profoundly impacts quality of life for those affected. ARFID is highly comorbid with autism, and we provide the first estimate of its prevalence in a large and phenotypically diverse autism cohort (a subsample of the SPARK study, N = 5,157 probands). This estimate, 21% (at a balanced accuracy 80%), is at the upper end of previous estimates from studies based on clinical samples, suggesting under-diagnosis and potentially lack of awareness among caretakers and clinicians. Although some studies suggest a decrease of disordered eating symptoms by age 6, our estimates indicate that up to 17% (at a balanced accuracy 87%) of parents of autistic children are also at heightened risk for ARFID, suggesting a lifelong risk for disordered eating. We were also able to provide the first estimates of narrow-sense heritability (h2) for ARFID risk, at 0.45. Genome-wide association revealed a single hit near ZSWIM6, a gene previously implicated in neurodevelopmental conditions. While, the current sample was not well-powered for GWAS, effect size and heritability estimates allowed us to project the sample sizes necessary to more robustly discover ARFID-linked loci via common variants. Further genetic analysis using polygenic risk scores (PRS) affirmed genetic links to autism as well as neuroticism and metabolic syndrome.</jats:p
