351 research outputs found

    Sequencing SARS-CoV-2 Genomes From Saliva

    Get PDF
    Genomic sequencing is crucial to understanding the epidemiology and evolution of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Often, genomic studies rely on remnant diagnostic material, typically nasopharyngeal (NP) swabs, as input into whole-genome SARS-CoV-2 next-generation sequencing pipelines. Saliva has proven to be a safe and stable specimen for the detection of SARS-CoV-2 RNA via traditional diagnostic assays; however, saliva is not commonly used for SARS-CoV-2 sequencing. Using the ARTIC Network amplicon-generation approach with sequencing on the Oxford Nanopore MinION, we demonstrate that sequencing SARS-CoV-2 from saliva produces genomes comparable to those from NP swabs, and that RNA extraction is necessary to generate complete genomes from saliva. In this study, we show that saliva is a useful specimen type for genomic studies of SARS-CoV-2

    Isolation and genomic characterization of Chaoyang virus strain ROK144 from \u3ci\u3eAedes vexansnipponii\u3c/i\u3e from the Republic of Korea

    Get PDF
    During June 2003, mosquito surveillance was conducted at a US Army installation and a US Military training site 2 km south of the demilitarized zone, Republic of Korea. Mosquitoes were collected using Mosquito MagnetsTM, sorted to species, and assayed for the presence of arboviruses. From the 3,149 mosquitoes that were sorted into126 pools, one Aedes vexan snipponii pool (out of 73 pools) tested positive for flavivirus RNA by reverse transcription-PCR. After isolation from C6/36 cell culture supernatant, the viral genome was sequenced and found to be 98.9% related to Chaoyang virus, a potential arthropod-specific flavivirus. This report details the first identification of Chaoyang virus in the Republic of Korea and highlights its relationship to other flaviviruses

    Isolation and genomic characterization of Chaoyang virus strain ROK144 from \u3ci\u3eAedes vexansnipponii\u3c/i\u3e from the Republic of Korea

    Get PDF
    During June 2003, mosquito surveillance was conducted at a US Army installation and a US Military training site 2 km south of the demilitarized zone, Republic of Korea. Mosquitoes were collected using Mosquito MagnetsTM, sorted to species, and assayed for the presence of arboviruses. From the 3,149 mosquitoes that were sorted into126 pools, one Aedes vexan snipponii pool (out of 73 pools) tested positive for flavivirus RNA by reverse transcription-PCR. After isolation from C6/36 cell culture supernatant, the viral genome was sequenced and found to be 98.9% related to Chaoyang virus, a potential arthropod-specific flavivirus. This report details the first identification of Chaoyang virus in the Republic of Korea and highlights its relationship to other flaviviruses

    Viral Kinetics of Sequential SARS-CoV-2 Infections

    Get PDF
    The impact of a prior SARS-CoV-2 infection on the progression of subsequent infections has been unclear. Using a convenience sample of 94,812 longitudinal RT-qPCR measurements from anterior nares and oropharyngeal swabs, we identified 71 individuals with two well-sampled SARS-CoV-2 infections between March 11th, 2020, and July 28th, 2022. We compared the SARS-CoV-2 viral kinetics of first vs. second infections in this group, adjusting for viral variant, vaccination status, and age. Relative to first infections, second infections usually featured a faster clearance time. Furthermore, a person\u27s relative (rank-order) viral clearance time, compared to others infected with the same variant, was roughly conserved across first and second infections, so that individuals who had a relatively fast clearance time in their first infection also tended to have a relatively fast clearance time in their second infection (Spearman correlation coefficient: 0.30, 95% credible interval (0.12, 0.46)). These findings provide evidence that, like vaccination, immunity from a prior SARS-CoV-2 infection shortens the duration of subsequent acute SARS-CoV-2 infections principally by reducing viral clearance time. Additionally, there appears to be an inherent element of the immune response, or some other host factor, that shapes a person\u27s relative ability to clear SARS-CoV-2 infection that persists across sequential infections

    Mosquitoes Transmit Unique West Nile Virus Populations During Each Feeding Episode

    Get PDF
    Arthropod-borne viruses (arboviruses), such as Zika virus, chikungunya virus, and West Nile virus (WNV), pose continuous threats to emerge and cause large epidemics. Often, these events are associated with novel virus variants optimized for local transmission that first arise as minorities within a host. Thus, the conditions that regulate the frequency of intrahost variants are important determinants of emergence. Here, we describe the dynamics of WNV genetic diversity during its transmission cycle. By temporally sampling saliva from individual mosquitoes, we demonstrate that virus populations expectorated by mosquitoes are highly diverse and unique to each feeding episode. After transmission to birds, however, most genetic diversity is removed by strong purifying selection. Further, transmission of potentially mosquito-adaptive WNV variants is strongly influenced by genetic drift in mosquitoes. These results highlight the complex evolutionary forces a novel virus variant must overcome to alter infection phenotypes at the population level

    Assessing the global risk of typhoid outbreaks caused by extensively drug resistant Salmonella Typhi.

    Get PDF
    Since its emergence in 2016, extensively drug resistant (XDR) Salmonella enterica serovar Typhi (S. Typhi) has become the dominant cause of typhoid fever in Pakistan. The establishment of sustained XDR S. Typhi transmission in other countries represents a major public health threat. We show that the annual volume of air travel from Pakistan strongly discriminates between countries that have and have not imported XDR S. Typhi in the past, and identify a significant association between air travel volume and the rate of between-country movement of the H58 haplotype of S. Typhi from fitted phylogeographic models. Applying these insights, we analyze flight itinerary data cross-referenced with model-based estimates of typhoid fever incidence to identify the countries at highest risk of importation and sustained onward transmission of XDR S. Typhi. Future outbreaks of XDR typhoid are most likely to occur in countries that can support efficient local S. Typhi transmission and have strong travel links to regions with ongoing XDR typhoid outbreaks (currently Pakistan). Public health activities to track and mitigate the spread of XDR S. Typhi should be prioritized in these countries

    Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection: A Case Series From a 12-Month Longitudinal Occupational Cohort

    Get PDF
    Findings are described in 7 patients with severe acute respiratory syndrome coronavirus 2 reinfection from the National Basketball Association 2020-2021 occupational testing cohort, including clinical details, antibody test results, genomic sequencing, and longitudinal reverse-transcription polymerase chain reaction results. Reinfections were infrequent and varied in clinical presentation, viral dynamics, and immune response

    Nonsystematic Reporting Biases of the SARS-CoV-2 Variant Mu Could Impact Our Understanding of the Epidemiological Dynamics of Emerging Variants

    Get PDF
    Developing a timely and effective response to emerging SARS-CoV-2 variants of concern (VOCs) is of paramount public health importance. Global health surveillance does not rely on genomic data alone to identify concerning variants when they emerge. Instead, methods that utilize genomic data to estimate the epidemiological dynamics of emerging lineages have the potential to serve as an early warning system. However, these methods assume that genomic data are uniformly reported across circulating lineages. In this study, we analyze differences in reporting delays among SARS-CoV-2 VOCs as a plausible explanation for the timing of the global response to the former VOC Mu. Mu likely emerged in South America in mid-2020, where its circulation was largely confined. In this study, we demonstrate that Mu was designated as a VOC ∼1 year after it emerged and find that the reporting of genomic data for Mu differed significantly than that of other VOCs within countries, states, and individual laboratories. Our findings suggest that nonsystematic biases in the reporting of genomic data may have delayed the global response to Mu. Until they are resolved, the surveillance gaps that affected the global response to Mu could impede the rapid and accurate assessment of future emerging variants

    Viral dynamics of acute SARS-CoV-2 infection and applications to diagnostic and public health strategies.

    Get PDF
    SARS-CoV-2 infections are characterized by viral proliferation and clearance phases and can be followed by low-level persistent viral RNA shedding. The dynamics of viral RNA concentration, particularly in the early stages of infection, can inform clinical measures and interventions such as test-based screening. We used prospective longitudinal quantitative reverse transcription PCR testing to measure the viral RNA trajectories for 68 individuals during the resumption of the 2019-2020 National Basketball Association season. For 46 individuals with acute infections, we inferred the peak viral concentration and the duration of the viral proliferation and clearance phases. According to our mathematical model, we found that viral RNA concentrations peaked an average of 3.3 days (95% credible interval [CI] 2.5, 4.2) after first possible detectability at a cycle threshold value of 22.3 (95% CI 20.5, 23.9). The viral clearance phase lasted longer for symptomatic individuals (10.9 days [95% CI 7.9, 14.4]) than for asymptomatic individuals (7.8 days [95% CI 6.1, 9.7]). A second test within 2 days after an initial positive PCR test substantially improves certainty about a patient's infection stage. The effective sensitivity of a test intended to identify infectious individuals declines substantially with test turnaround time. These findings indicate that SARS-CoV-2 viral concentrations peak rapidly regardless of symptoms. Sequential tests can help reveal a patient's progress through infection stages. Frequent, rapid-turnaround testing is needed to effectively screen individuals before they become infectious

    Nasal Host Response-Based Screening for Undiagnosed Respiratory Viruses: A Pathogen Surveillance and Detection Study

    Get PDF
    BACKGROUND: Symptomatic patients who test negative for common viruses are an important possible source of unrecognised or emerging pathogens, but metagenomic sequencing of all samples is inefficient because of the low likelihood of finding a pathogen in any given sample. We aimed to determine whether nasopharyngeal CXCL10 screening could be used as a strategy to enrich for samples containing undiagnosed viruses. METHODS: In this pathogen surveillance and detection study, we measured CXCL10 concentrations from nasopharyngeal swabs from patients in the Yale New Haven health-care system, which had been tested at the Yale New Haven Hospital Clinical Virology Laboratory (New Haven, CT, USA). Patients who tested negative for a panel of respiratory viruses using multiplex PCR during Jan 23-29, 2017, or March 3-14, 2020, were included. We performed host and pathogen RNA sequencing (RNA-Seq) and analysis for viral reads on samples with CXCL10 higher than 1 ng/mL or CXCL10 testing and quantitative RT-PCR (RT-qPCR) for SARS-CoV-2. We used RNA-Seq and cytokine profiling to compare the host response to infection in samples that were virus positive (rhinovirus, seasonal coronavirus CoV-NL63, or SARS-CoV-2) and virus negative (controls). FINDINGS: During Jan 23-29, 2017, 359 samples were tested for ten viruses on the multiplex PCR respiratory virus panel (RVP). 251 (70%) were RVP negative. 60 (24%) of 251 samples had CXCL10 higher than 150 pg/mL and were identified for further analysis. 28 (47%) of 60 CXCL10-high samples were positive for seasonal coronaviruses. 223 (89%) of 251 samples were PCR negative for 15 viruses and, of these, CXCL10-based screening identified 32 (13%) samples for further analysis. Of these 32 samples, eight (25%) with CXCL10 concentrations higher than 1 ng/mL and sufficient RNA were selected for RNA-Seq. Microbial RNA analysis showed the presence of influenza C virus in one sample and revealed RNA reads from bacterial pathobionts in four (50%) of eight samples. Between March 3 and March 14, 2020, 375 (59%) of 641 samples tested negative for 15 viruses on the RVP. 32 (9%) of 375 samples had CXCL10 concentrations ranging from 100 pg/mL to 1000 pg/mL and four of those were positive for SARS-CoV-2. CXCL10 elevation was statistically significant, and a distinguishing feature was found in 28 (8%) of 375 SARS-CoV-2-negative samples versus all four SARS-CoV-2-positive samples (p=4·4 × 10 INTERPRETATION: These results confirm CXCL10 as a robust nasopharyngeal biomarker of viral respiratory infection and support host response-based screening followed by metagenomic sequencing of CXCL10-high samples as a practical approach to incorporate clinical samples into pathogen discovery and surveillance efforts. FUNDING: National Institutes of Health, the Hartwell Foundation, the Gruber Foundation, Fast Grants for COVID-19 research from the Mercatus Center, and the Huffman Family Donor Advised Fund
    corecore