105 research outputs found

    Pichinde virus induces microvascular endothelial cell permeability through the production of nitric oxide

    Get PDF
    This report is the first to demonstrate infection of human endothelial cells by Pichinde virus (PIC). PIC infection induces an upregulation of the inducible nitric oxide synthase gene; as well as an increase in detectable nitric oxide (NO). PIC induces an increase in permeability in endothelial cell monolayers which can be abrogated at all measured timepoints with the addition of a nitric oxide synthase inhibitor, indicating a role for NO in the alteration of endothelial barrier function. Because NO has shown antiviral activity against some viruses, viral titer was measured after addition of the NO synthase inhibitor and found to have no effect in altering virus load in infected EC. The NO synthase inhibition also has no effect on levels of activated caspases induced by PIC infection. Taken together, these data indicate NO production induced by Pichinde virus infection has a pathogenic effect on endothelial cell monolayer permeability

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Glycosylasparaginase

    No full text

    Aspartylglycosaminuria: biochemistry and molecular biology

    Get PDF
    AbstractAspartylglucosaminuria (AGU, McKusick 208400) is an autosomal recessive lysosomal storage disease caused by defective degradation of Asn-linked glycoproteins. AGU mutations occur in the gene (AGA) for glycosylasparaginase, the enzyme necessary for hydrolysis of the protein–oligosaccharide linkage in Asn-linked glycoprotein substrates undergoing metabolic turnover. Loss of glycosylasparaginase activity leads to accumulation of the linkage unit Asn–GlcNAc in tissue lysosomes. Storage of this fragment affects the pathophysiology of neuronal cells most severely. The patients notably suffer from decreased cognitive abilities, skeletal abnormalities and facial grotesqueness. The progress of the disease is slower than in many other lysosomal storage diseases. The patients appear normal during infancy and generally live from 25 to 45 years. A specific AGU mutation is concentrated in the Finnish population with over 200 patients. The carrier frequency in Finland has been estimated to be in the range of 2.5–3% of the population. So far there are 20 other rare family AGU alleles that have been characterized at the molecular level in the world’s population. Recently, two knockout mouse models for AGU have been developed. In addition, the crystal structure of human leukocyte glycosylasparaginase has been determined and the protein has a unique αββα sandwich fold shared by a newly recognized family of important enzymes called N-terminal nucleophile (Ntn) hydrolases. The nascent single-chain precursor of glycosylase araginase self-cleaves into its mature α- and β-subunits, a reaction required to activate the enzyme. This interesting biochemical feature is also shared by most of the Ntn-hydrolase family of proteins. Many of the disease-causing mutations prevent proper folding and subsequent activation of the glycosylasparaginase

    Lysosomal Degradation of Glycoproteins

    No full text

    Lysosomal Storage Diseases

    No full text

    Lysosomal Hyaluronidase

    No full text
    corecore