5,437 research outputs found

    Twin Turtles

    Full text link
    We present an ultraviolet extension of the Twin Higgs in which the radial mode of twin symmetry breaking is itself a pseudo-goldstone boson. This "turtle" structure raises the scale of new colored particles in exchange for additional states in the Higgs sector, making multiple Higgs-like scalars the definitive signature of naturalness in this context. We explore the parametrics and phenomenology of a concrete Twin Turtle model and demonstrate its robustness in two different supersymmetric completions. Along the way, we also introduce a new mechanism for inducing hard twin symmetry-breaking quartics via soft supersymmetry breaking.Comment: 36 pages, 13 figure

    Complete One-Loop Matching for a Singlet Scalar in the Standard Model EFT

    Get PDF
    We present the results of the first complete one-loop matching calculation between the real singlet scalar extension of the Standard Model and the Standard Model effective field theory (SMEFT) at dimension six. Beyond their immediate relevance to the precision calculation of observables in singlet extensions of the Standard Model, our results illustrate a variety of general features of one-loop matching. We explore the interplay between non-supersymmetric non-renormalization theorems, the logarithmic dependence of Wilson coefficients, and the relevance of mixed diagrams in theories with large scale separation. In addition, we highlight some of the subtleties involved in computing observables at next-to-leading order in SMEFT by mapping our results to the TT parameter at one loop.Comment: 21 page

    Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    Get PDF
    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature

    Influence of space charge on domain patterns and susceptibility in a rhombohedral ferroelectric film

    Full text link
    The presence of a space charge region induces an internal electric field within the charged region that, in a ferroelectric material, would rotate the polarisations to align with the field. The strength of the induced field would therefore determine the domain patterns and polarisation switching properties of the material. Using a phase-field model, we investigate the effect of charged layers in fully and partially depleted BiFeO3_3 thin films in the rhombohedral phase. While the domain pattern in a charge-free BiFeO3_3 film consists of only two polarisation variants, we observe complex patterns with four coexisting variants that form within the charged layers at sufficiently high induced fields. These variants form a head-to-head configuration with an interface that is either wavy or planar depending on the internal field strength, which is determined by the charge density as well as the thickness of the charged layer. For depletion layers with sufficient thickness, there exists a range of charge density values for which the interface is wavy, while at high densities the interface becomes planar. We find that films with wavy interfaces exhibit enhanced susceptibilities with reduced hystereses compared to the charge-free film. The results of our work suggest that introducing space charge regions by careful selection of dopant density and electrode materials can engineer domain patterns that yield a higher response with a smaller hysteresis.Comment: 13 pages, 11 figure

    Heavy Higgs Bosons at Low tanβ\tan \beta: from the LHC to 100 TeV

    Get PDF
    We present strategies to search for heavy neutral Higgs bosons decaying to top quark pairs, as often occurs at low tanβ\tan \beta in type II two Higgs doublet models such as the Higgs sector of the MSSM. The resonant production channel is unsatisfactory due to interference with the SM background. We instead propose to utilize same-sign dilepton signatures arising from the production of heavy Higgs bosons in association with one or two top quarks and subsequent decay to a top pair. We find that for heavier neutral Higgs bosons the production in association with one top quark provides greater sensitivity than production in association with two top quarks. We obtain current limits at the LHC using Run I data at 8 TeV and forecast the sensitivity of a dedicated analysis during Run II at 14 TeV. Then we perform a detailed BDT study for the 14 TeV LHC and a future 100 TeV collider.Comment: published version, 22 pages, 15 figures, 3 table

    Characterizing Operations Preserving Separability Measures via Linear Preserver Problems

    Full text link
    We use classical results from the theory of linear preserver problems to characterize operators that send the set of pure states with Schmidt rank no greater than k back into itself, extending known results characterizing operators that send separable pure states to separable pure states. We also provide a new proof of an analogous statement in the multipartite setting. We use these results to develop a bipartite version of a classical result about the structure of maps that preserve rank-1 operators and then characterize the isometries for two families of norms that have recently been studied in quantum information theory. We see in particular that for k at least 2 the operator norms induced by states with Schmidt rank k are invariant only under local unitaries, the swap operator and the transpose map. However, in the k = 1 case there is an additional isometry: the partial transpose map.Comment: 16 pages, typos corrected, references added, proof of Theorem 4.3 simplified and clarifie

    DIP-2 suppresses ectopic neurite sprouting and axonal regeneration in mature neurons.

    Get PDF
    Neuronal morphology and circuitry established during early development must often be maintained over the entirety of animal lifespans. Compared with neuronal development, the mechanisms that maintain mature neuronal structures and architecture are little understood. The conserved disco-interacting protein 2 (DIP2) consists of a DMAP1-binding domain and two adenylate-forming domains (AFDs). We show that the Caenorhabditis elegans DIP-2 maintains morphology of mature neurons. dip-2 loss-of-function mutants display a progressive increase in ectopic neurite sprouting and branching during late larval and adult life. In adults, dip-2 also inhibits initial stages of axon regeneration cell autonomously and acts in parallel to DLK-1 MAP kinase and EFA-6 pathways. The function of DIP-2 in maintenance of neuron morphology and in axon regrowth requires its AFD domains and is independent of its DMAP1-binding domain. Our findings reveal a new conserved regulator of neuronal morphology maintenance and axon regrowth after injury
    corecore