1,051 research outputs found

    Quantum Computer Using Coupled Quantum Dot Molecules

    Get PDF
    We propose a method for implementation of a quantum computer using artificial molecules. The artificial molecule consists of two coupled quantum dots stacked along z direction and one single electron. One-qubit and two-qubit gates are constructed by one molecule and two coupled molecules, respectively.The ground state and the first excited state of the molecule are used to encode the |0> and |1> states of a qubit. The qubit is manipulated by a resonant electromagnetic wave that is applied directly to the qubit through a microstrip line. The coupling between two qubits in a quantum controlled NOT gate is switched on (off) by floating (grounding) the metal film electrodes. We study the operations of the gates by using a box-shaped quantum dot model and numerically solving a time-dependent Schridinger equation, and demonstrate that the quantum gates can perform the quantum computation. The operating speed of the gates is about one operation per 4ps. The reading operation of the output of the quantum computer can be performed by detecting the polarization of the qubits.Comment: 18 pages, 7 figures, submitted to Jpn. J. Appl. Phys, please send your e-mail to Nan-Jian Wu <[email protected]

    Step Bunching with Alternation of Structural Parameters

    Get PDF
    By taking account of the alternation of structural parameters, we study bunching of impermeable steps induced by drift of adatoms on a vicinal face of Si(001). With the alternation of diffusion coefficient, the step bunching occurs irrespective of the direction of the drift if the step distance is large. Like the bunching of permeable steps, the type of large terraces is determined by the drift direction. With step-down drift, step bunches grows faster than those with step-up drift. The ratio of the growth rates is larger than the ratio of the diffusion coefficients. Evaporation of adatoms, which does not cause the step bunching, decreases the difference. If only the alternation of kinetic coefficient is taken into account, the step bunching occurs with step-down drift. In an early stage, the initial fluctuation of the step distance determines the type of large terraces, but in a late stage, the type of large terraces is opposite to the case of alternating diffusion coefficient.Comment: 8pages, 16 figure

    Chiral spin-orbital liquids with nodal lines

    Get PDF
    Strongly correlated materials with strong spin-orbit coupling hold promise for realizing topological phases with fractionalized excitations. Here we propose a chiral spin-orbital liquid as a stable phase of a realistic model for heavy-element double perovskites. This spin liquid state has Majorana fermion excitations with a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. We show that the nodal lines are topological defects of a non-Abelian Berry connection and that the system exhibits dispersing surface states. We discuss some experimental signatures of this state and compare them with properties of the spin liquid candidate Ba_2YMoO_6.Comment: 5 pages + supplementary materia

    Investigation of marmoset hybrids (Cebuella pygmaea x Callithrix jacchus) and related Callitrichinae (Platyrrhini) by cross-species chromosome painting and comparative genomic hybridization

    Get PDF
    We report on the cytogenetics of twin offspring from an interspecies cross in marmosets (Callitrichinae, Platyrrhini), resulting from a pairing between a female Common marmoset (Callithrix jacchus, 2n = 46) and a male Pygmy marmoset (Cebuella pygmaea, 2n = 44). We analyzed their karyotypes by multi-directional chromosome painting employing human, Saguinus oedipus and Lagothrix lagothricha chromosome-specific probes. Both hybrid individuals had a karyotype with a diploid chromosome number of 2n = 45. As a complementary tool, interspecies comparative genomic hybridization (iCGH) was performed in order to screen for genomic imbalances between the hybrids and their parental species, and between Callithrix argentata and S. oedipus, respectively. Copyright (C) 2005 S. Karger AG, Basel

    IL-12 Production Induced by Agaricus blazei Fraction H (ABH) Involves Toll-like Receptor (TLR)

    Get PDF
    Agaricus blazei Murill is an edible fungus used in traditional medicine, which has various well-documented medicinal properties. In the present study, we investigated the effects of hemicellulase-derived mycelia extract (Agaricus blazei fraction H: ABH) on the immune system. First, we examined the cytokine-inducing activity of ABH on human peripheral mononuclear cells (PBMC). The results indicated that ABH induced expression of IL-12, a cytokine known to be a critical regulator of cellular immune responses. Flow cytometric analysis demonstrated the induction of IL-12 production by the CD14-positive cell population, consisting of monocytes/macrophages (Mo/Mφ). Furthermore, the elimination of Mo/Mφ attenuated IL-12 production in PBMC. ABH-induced IL-12 production was inhibited by anti-CD14 and anti-TLR4 antibodies but not by anti-TLR2 antibody. The activity of ABH was not inhibited by polymyxin B, while the activity of lipopolysaccharide used as a reference was inhibited. Oral administration of ABH enhanced natural killer (NK) activity in the spleen. These findings suggest that ABH activated Mo/Mφ in a manner dependent on CD14/TLR4 and NK activity

    Fast and stable method for simulating quantum electron dynamics

    Full text link
    A fast and stable method is formulated to compute the time evolution of a wavefunction by numerically solving the time-dependent Schr{\"o}dinger equation. This method is a real space/real time evolution method implemented by several computational techniques such as Suzuki's exponential product, Cayley's form, the finite differential method and an operator named adhesive operator. This method conserves the norm of the wavefunction, manages periodic conditions and adaptive mesh refinement technique, and is suitable for vector- and parallel-type supercomputers. Applying this method to some simple electron dynamics, we confirmed the efficiency and accuracy of the method for simulating fast time-dependent quantum phenomena.Comment: 10 pages, 35 eps figure

    Electronic States in Silicon Quantum Dots: Multivalley Artificial Atoms

    Full text link
    Electronic states in silicon quantum dots are examined theoretically, taking into account a multivalley structure of the conduction band. We find that (i) exchange interaction hardly works between electrons in different valleys. In consequence electrons occupy the lowest level in different valleys in the absence of Hund's coupling when the dot size is less than 10 nm. High-spin states are easily realized by applying a small magnetic field. (ii) When the dot size is much larger, the electron-electron interaction becomes relevant in determining the electronic states. Electrons are accommodated in a valley, making the highest spin, to gain the exchange energy. (iii) In the presence of intervalley scattering, degenerate levels in different valleys are split. This could result in low-spin states. These spin states in multivalley artificial atoms can be observed by looking at the magnetic-field dependence of peak positions in the Coulomb oscillation.Comment: 18 pages, 5 figure

    Two Dimensional Quantum Mechanical Modeling of Nanotransistors

    Full text link
    Quantization in the inversion layer and phase coherent transport are anticipated to have significant impact on device performance in 'ballistic' nanoscale transistors. While the role of some quantum effects have been analyzed qualitatively using simple one dimensional ballistic models, two dimensional (2D) quantum mechanical simulation is important for quantitative results. In this paper, we present a framework for 2D quantum mechanical simulation of a nanotransistor / Metal Oxide Field Effect Transistor (MOSFET). This framework consists of the non equilibrium Green's function equations solved self-consistently with Poisson's equation. Solution of this set of equations is computationally intensive. An efficient algorithm to calculate the quantum mechanical 2D electron density has been developed. The method presented is comprehensive in that treatment includes the three open boundary conditions, where the narrow channel region opens into physically broad source, drain and gate regions. Results are presented for (i) drain current versus drain and gate voltages, (ii) comparison to results from Medici, and (iii) gate tunneling current, using 2D potential profiles. Methods to reduce the gate leakage current are also discussed based on simulation results.Comment: 12 figures. Journal of Applied Physics (to appear

    Study of a Threshold Cherenkov Counter Based on Silica Aerogels with Low Refractive Indices

    Full text link
    To identify π±\pi^{\pm} and K±K^{\pm} in the region of 1.02.51.0\sim 2.5 GeV/c, a threshold Cherenkov counter equipped with silica aerogels has been investigated. Silica aerogels with a low refractive index of 1.013 have been successfully produced using a new technique. By making use of these aerogels as radiators, we have constructed a Cherenkov counter and have checked its properties in a test beam. The obtained results have demonstrated that our aerogel was transparent enough to make up for loss of the Cherenkov photon yield due to a low refractive index. Various configurations for the photon collection system and some types of photomultipliers, such as the fine-mesh type, for a read out were also tested. From these studies, our design of a Cherenkov counter dedicated to π/K\pi / K separation up to a few GeV/c %in the momentum range of 1.02.51.0 \sim 2.5 GeV/c with an efficiency greater than 9090 \% was considered.Comment: 21 pages, latex format (article), figures included, to be published in Nucl. Instrm. Meth.

    Suppression of non-Poissonian shot noise by Coulomb correlations in ballistic conductors

    Get PDF
    We investigate the current injection into a ballistic conductor under the space-charge limited regime, when the distribution function of injected carriers is an arbitrary function of energy F_c(epsilon). The analysis of the coupled kinetic and Poisson equations shows that the injected current fluctuations may be essentially suppressed by Coulomb correlations, and the suppression level is determined by the shape of F_c(epsilon). This is in contrast to the time-averaged quantities: the mean current and the spatial profiles are shown to be insensitive to F_c(epsilon) in the leading-order terms at high biases. The asymptotic high-bias behavior for the energy resolved shot-noise suppression has been found for an arbitrary (non-Poissonian) injection, which may suggest a new field of investigation on the optimization of the injected energy profile to achieve the desired noise-suppression level.Comment: extended version 4 -> 8 pages, examples and figure adde
    corecore