5,979 research outputs found
Protective Yeasts Control V. anguillarum Pathogenicity and Modulate the Innate Immune Response of Challenged Zebrafish (Danio rerio) Larvae
Indexación: Web of ScienceWe investigated mechanisms involved in the protection of zebrafish (Danio rerio) larvae by two probiotic candidate yeasts, Debaryornyces hansenii 97 (Dh97) and Yarrowia Iypolitica 242 (YI242), against a Vibrio anguillarum challenge. We determined the effect of different yeast concentrations (10(4)-10(7) CFU/mL) to: (i) protect larvae from the challenge, (ii) reduce the in vivo pathogen concentration and (iii) modulate the innate immune response of the host. To evaluate the role of zebrafish microbiota in protection, the experiments were performed in conventionally raised and germ free larvae. In vitro co-aggregation assays were performed to determine a direct yeast-pathogen interaction. Results showed that both yeasts significantly increased the survival rate of conventionally raised larvae challenged with V. anguillarum. The concentration of yeasts in larvae tended to increase with yeast inoculum, which was more pronounced for Dh97. Better protection was observed with Dh97 at a concentration of 106 CFU/mL compared to 104 CFU/mL. In germ-free conditions V anguillarum reached higher concentrations in larvae and provoked significantly more mortality than in conventional conditions, revealing the protective role of the host microbiota. Interestingly, yeasts were equally (Dh97) or more effective (YI242) in protecting germ-free than conventionally-raised larvae, showing that protection can be exerted only by yeasts and is not necessarily related to modulation of the host microbiota. Although none of the yeasts co aggregated with V anguillarum, they were able to reduce its proliferation in conventionally raised larvae, reduce initial pathogen concentration in germ-free larvae and prevent the upregulation of key components of the inflammatory/anti-inflammatory response (il1b, tnfa, c3, mpx, and il10, respectively). These results show that protection by yeasts of zebrafish larvae challenged with V anguillarum relates to an in vivo anti-pathogen effect, the modulation of the innate immune system, and suggests that yeasts avoid the host-pathogen interaction through mechanisms independent of co-aggregation. This study shows, for the first time, the protective role of zebrafish microbiota against V. anguillarum infection, and reveals mechanisms involved in protection by two non-Saccharomyces yeasts against this pathogen.http://journal.frontiersin.org/article/10.3389/fcimb.2016.00127/ful
Floquet theory for temporal correlations and spectra in time-periodic open quantum systems: Application to squeezed parametric oscillation beyond the rotating-wave approximation
Open quantum systems can display periodic dynamics at the classical level
either due to external periodic modulations or to self-pulsing phenomena
typically following a Hopf bifurcation. In both cases, the quantum fluctuations
around classical solutions do not reach a quantum-statistical stationary state,
which prevents adopting the simple and reliable methods used for stationary
quantum systems. Here we put forward a general and efficient method to compute
two-time correlations and corresponding spectral densities of time-periodic
open quantum systems within the usual linearized (Gaussian) approximation for
their dynamics. Using Floquet theory we show how the quantum Langevin equations
for the fluctuations can be efficiently integrated by partitioning the time
domain into one-period duration intervals, and relating the properties of each
period to the first one. Spectral densities, like squeezing spectra, are
computed similarly, now in a two-dimensional temporal domain that is treated as
a chessboard with one-period x one-period cells. This technique avoids
cumulative numerical errors as well as efficiently saves computational time. As
an illustration of the method, we analyze the quantum fluctuations of a damped
parametrically-driven oscillator (degenerate parametric oscillator) below
threshold and far away from rotating-wave approximation conditions, which is a
relevant scenario for modern low-frequency quantum oscillators. Our method
reveals that the squeezing properties of such devices are quite robust against
the amplitude of the modulation or the low quality of the oscillator, although
optimal squeezing can appear for parameters that are far from the ones
predicted within the rotating-wave approximation.Comment: Comments and constructive criticism are welcom
Bulge RR Lyrae stars in the VVV tile
The VISTA Variables in the V\'ia L\'actea (VVV) Survey is one of the six ESO
public surveys currently ongoing at the VISTA telescope on Cerro Paranal,
Chile. VVV uses near-IR () filters that at present provide
photometry to a depth of mag in up to 36 epochs spanning
over four years, and aim at discovering more than 10 variable sources as
well as trace the structure of the Galactic bulge and part of the southern
disk. A variability search was performed to find RR Lyrae variable stars. The
low stellar density of the VVV tile , which is centered at
() (), makes it suitable to search for
variable stars. Previous studies have identified some RR Lyrae stars using
optical bands that served to test our search procedure. The main goal is to
measure the reddening, interstellar extinction, and distances of the RR Lyrae
stars and to study their distribution on the Milky Way bulge. A total of 1.5 sq
deg were analyzed, and we found 39 RR Lyrae stars, 27 of which belong to the
ab-type and 12 to the c-type. Our analysis recovers all the previously
identified RR Lyrae variables in the field and discovers 29 new RR Lyrae stars.
The reddening and extinction toward all the RRab stars in this tile were
derived, and distance estimations were obtained through the period--luminosity
relation. Despite the limited amount of RR Lyrae stars studied, our results are
consistent with a spheroidal or central distribution around and
kpc. for either the Cardelli or Nishiyama extinction law.Comment: 10 pages, 8 figures, accepted for publication in Astronomy and
Astrophysic
Spontaneous symmetry breaking as a resource for noncritically squeezed light
In the last years we have proposed the use of the mechanism of spontaneous
symmetry breaking with the purpose of generating perfect quadrature squeezing.
Here we review previous work dealing with spatial (translational and
rotational) symmetries, both on optical parametric oscillators and four-wave
mixing cavities, as well as present new results. We then extend the phenomenon
to the polarization state of the signal field, hence introducing spontaneous
polarization symmetry breaking. Finally we propose a Jaynes-Cummings model in
which the phenomenon can be investigated at the single-photon-pair level in a
non-dissipative case, with the purpose of understanding it from a most
fundamental point of view.Comment: Review for the proceedings of SPIE Photonics Europe. 11 pages, 5
figures
Isotropic reconstruction of 3D fluorescence microscopy images using convolutional neural networks
Fluorescence microscopy images usually show severe anisotropy in axial versus
lateral resolution. This hampers downstream processing, i.e. the automatic
extraction of quantitative biological data. While deconvolution methods and
other techniques to address this problem exist, they are either time consuming
to apply or limited in their ability to remove anisotropy. We propose a method
to recover isotropic resolution from readily acquired anisotropic data. We
achieve this using a convolutional neural network that is trained end-to-end
from the same anisotropic body of data we later apply the network to. The
network effectively learns to restore the full isotropic resolution by
restoring the image under a trained, sample specific image prior. We apply our
method to synthetic and real datasets and show that our results improve
on results from deconvolution and state-of-the-art super-resolution techniques.
Finally, we demonstrate that a standard 3D segmentation pipeline performs on
the output of our network with comparable accuracy as on the full isotropic
data
Conjugated Polymers for Organic Electronics: Structural and Electronic Characteristics
The use of organic materials to design electronic devices has actually presented a broad interest for because they constitute an ecological and suitable resource for our current "electronic world". These materials provide several advantages (low cost, light weight, good flexibility and solubility to be easily printed) that cannot be afforded with silicium. They can also potentially interact with biological systems, something impossible with inorganic devices. Between these materials we can include small molecules, polymers, fullerenes, nanotubes, graphene, other carbon-based molecular structures and hybrid materials. Actually these materials are being used to build electronic structures into electronic devices, like organic light-emitting diodes (OLEDs), organic solar cells (OSCs), and organic field-effect transistors (OFETs), constituting and already commercial reality. Some of them are used on a widespread basis1, and are the focus of some recent researches in molecules2,3 and polymers4-6 suitable for these purposes.
In this study we analyze the electronic and molecular characteristics of some different π-conjugated structures in order to evaluate their potential as semiconducting materials for organic electronics. For this purpose we focus on the study of conjugated polymers with different backbones configurations: (i) donor-acceptor configuration, (ii) 1D lineal or 2D branched conjugated backbones, and (iii) encapsulated polymers. To achieve this goal, we use a combined experimental and theoretical approach that includes electronic spectroscopies (i.e., absorption, emission and microsecond transient absorption), vibrational Raman spectroscopy and DFT calculations. These structural modifications are found to provoke a strong impact on the HOMO and LUMO levels and the molecular morphology, and, consequently, on their suitability as semiconductors in organic electronic applications.References
1. S. R. Forrest, M. E. Thompson. Chem. Rev., 2007, 107, 923
2. R. C. González-Cano, G. Saini, J. Jacob, J. T. López Navarrete, J. Casado and M. C. Ruiz Delgado. Chem. Eur. J. 2013, 19, 17165
3. J. L. Zafra, R. C. González-Cano, M. C. Ruiz Delgado, Z. Sun, Y. Li, J. T. López Navarrete, J. Wu and J. Casado. J. Chem. Phys. , 2014, 140, 054706
4. M. Goll, A. Ruff, E. Muks, F. Goerigk, B. Omiecienski, I. Ruff, R. C. González-Cano, J. T. López Navarrete, M. C. Ruiz Delgado, S. Ludwigs. Beilstein J. Org. Chem., 2015, 11, 335.
5. D. Herrero-Carvajal, A. de la Peña, R. C. González-Cano, C. Seoane, J. T. López Navarrete, J. L. Segura, J. Casado, M. C. Ruiz Delgado, J. Phys. Chem. C, 2014, 118, 9899.
6. M. Scheuble, Y. M. Gross, D. Trefz, M. Brinkmann, J. T. López Navarrete, M. C. Ruiz Delgado, and S. Ludwigs, Macromolecules, 2015, 48, 7049.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Influence of Feeding Enzymatically Hydrolyzed Yeast Cell Wall on Growth Performance and Digestive Function of Feedlot Cattle during Periods of Elevated Ambient Temperature.
In experiment 1, eighty crossbred steers (239±15 kg) were used in a 229-d experiment to evaluate the effects of increasing levels of enzymatically hydrolyzed yeast (EHY) cell wall in diets on growth performance feedlot cattle during periods of elevated ambient temperature. Treatments consisted of steam-flaked corn-based diets supplemented to provide 0, 1, 2, or 3 g EHY/hd/d. There were no effects on growth performance during the initial 139-d period. However, from d 139 to harvest, when 24-h temperature humidity index averaged 80, EHY increased dry matter intake (DMI) (linear effect, p<0.01) and average daily gain (ADG) (linear effect, p = 0.01). There were no treatment effects (p>0.10) on carcass characteristics. In experiment 2, four Holstein steers (292±5 kg) with cannulas in the rumen and proximal duodenum were used in a 4×4 Latin Square design experiment to evaluate treatments effects on characteristics of ruminal and total tract digestion in steers. There were no treatment effects (p>0.10) on ruminal pH, total volatile fatty acid, molar proportions of acetate, butyrate, or estimated methane production. Supplemental EHY decreased ruminal molar proportion of acetate (p = 0.08), increased molar proportion of propionate (p = 0.09), and decreased acetate:propionate molar ratio (p = 0.07) and estimated ruminal methane production (p = 0.09). It is concluded that supplemental EHY may enhance DMI and ADG of feedlot steers during periods of high ambient temperature. Supplemental EHY may also enhance ruminal fiber digestion and decrease ruminal acetate:propionate molar ratios in feedlot steers fed steam-flaked corn-based finishing diets
Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions
The generation of continuous-variable multipartite entangled states is
important for several protocols of quantum information processing and
communication, such as one-way quantum computation or controlled dense coding.
In this article we theoretically show that multimode optical parametric
oscillators can produce a great variety of such states by an appropriate
control of the parametric interaction, what we accomplish by tailoring either
the spatio-temporal shape of the pump, or the geometry of the nonlinear medium.
Specific examples involving currently available optical parametric oscillators
are given, hence showing that our ideas are within reach of present technology.Comment: 14 pages, 5 figure
Near-IR period-luminosity relations for pulsating stars in Centauri (NGC 5139)
Centauri (NGC 5139) hosts hundreds of pulsating variable stars of
different types, thus representing a treasure trove for studies of their
corresponding period-luminosity (PL) relations. Our goal in this study is to
obtain the PL relations for RR Lyrae, and SX Phoenicis stars in the field of
the cluster, based on high-quality, well-sampled light curves in the
near-infrared (IR). Centauri was observed using VIRCAM mounted on
VISTA. A total of 42 epochs in and 100 epochs in were obtained,
spanning 352 days. Point-spread function photometry was performed using DoPhot
and DAOPHOT in the outer and inner regions of the cluster, respectively. Based
on the comprehensive catalogue of near-IR light curves thus secured, PL
relations were obtained for the different types of pulsators in the cluster,
both in the and bands. This includes the first PL relations in
the near-IR for fundamental-mode SX Phoenicis stars. The near-IR magnitudes and
periods of Type II Cepheids and RR Lyrae stars were used to derive an updated
true distance modulus to the cluster, with a resulting value of mag, where the error bars correspond to the adopted
statistical and systematic errors, respectively. Adding the errors in
quadrature, this is equivalent to a heliocentric distance of
kpc.Comment: 10 pages, 8 figures, accepted for publication in A&
- …
