64,004 research outputs found

    Impact of radiative corrections on sterile neutrino scenarios

    Get PDF
    In sterile neutrino scenarios, radiative corrections induce mass splittings proportional to the top Yukawa coupling, in contrast to the three active neutrino case where the induced splittings are proportional to the tau Yukawa coupling. In view of this, we have analyzed the stability of the four-neutrino schemes favored by oscillation experiments, consisting in two pairs of nearly degenerate neutrinos separated by the LSND gap. Requiring compatibility with the measurements of the abundances of primordial elements produced in Big Bang Nucleosynthesis, we find that when the heaviest pair corresponds to the solar neutrinos (mainly an admixture of nu_e - nu_s) the natural mass splitting is 3-5 orders of magnitude larger than the observed one, discrediting the scenario from a theoretical point of view. On the contrary, the scheme where the heaviest pair corresponds to the atmospheric neutrinos (mainly an admixture of nu_mu - nu_tau) is safe from radiative corrections due to the small sterile component of these mass eigenstates.Comment: 14 pages, LaTeX, 2 figures. Discussion enlarged, references added and typos correcte

    Constraints on gluon polarization in the nucleon at NLO accuracy

    Get PDF
    We compare constraints on the gluon polarization in the nucleon obtained in next to leading order global QCD fits to polarized deep inelastic scattering data with those coming from observables more directly linked to the gluon polarization, such as the double spin asymmetry measured by Phenix at RHIC, and high-pT hadron production studied by COMPASSComment: 4 pages, 3 figures, 1 tabl

    The Vector Curvaton

    Full text link
    We analyze a massive vector field with a non-canonical kinetic term in the action, minimally coupled to gravity, where the mass and kinetic function of the vector field vary as functions of time during inflation. The vector field is introduced following the same idea of a scalar curvaton, which must not affect the inflationary dynamics since its energy density during inflation is negligible compared to the total energy density in the Universe. Using this hypothesis, the vector curvaton will be solely responsible for generating the primordial curvature perturbation \zeta. We have found that the spectra of the vector field perturbations are scale-invariant in superhorizon scales due to the suitable choice of the time dependence of the kinetic function and the effective mass during inflation. The preferred direction, generated by the vector field, makes the spectrum of \zeta depend on the wavevector, i.e. there exists statistical anisotropy in \zeta. This is discussed principally in the case where the mass of the vector field increases with time during inflation, where it is possible to find a heavy field (M >> H) at the end of inflation, making the particle production be practically isotropic; thus, the longitudinal and transverse spectra are nearly the same order which in turn causes that the statistical anisotropy generated by the vector field is within the observational bounds.Comment: LaTex file in Aipproc style, 6 pages, no figures. Prepared for the conference proceedings of the IX Mexican School of the DGFM-SMF: Cosmology for the XXIst Century. This work is entirely based on Refs. [23-26] and is the result of Andres A. Navarro's MSc thesi

    Convergence of Scalar-Tensor theories toward General Relativity and Primordial Nucleosynthesis

    Get PDF
    In this paper, we analyze the conditions for convergence toward General Relativity of scalar-tensor gravity theories defined by an arbitrary coupling function α\alpha (in the Einstein frame). We show that, in general, the evolution of the scalar field (ϕ)(\phi) is governed by two opposite mechanisms: an attraction mechanism which tends to drive scalar-tensor models toward Einstein's theory, and a repulsion mechanism which has the contrary effect. The attraction mechanism dominates the recent epochs of the universe evolution if, and only if, the scalar field and its derivative satisfy certain boundary conditions. Since these conditions for convergence toward general relativity depend on the particular scalar-tensor theory used to describe the universe evolution, the nucleosynthesis bounds on the present value of the coupling function, α0\alpha_0, strongly differ from some theories to others. For example, in theories defined by αϕ\alpha \propto \mid\phi\mid analytical estimates lead to very stringent nucleosynthesis bounds on α0\alpha_0 (1019\lesssim 10^{-19}). By contrast, in scalar-tensor theories defined by αϕ\alpha \propto \phi much larger limits on α0\alpha_0 (107\lesssim 10^{-7}) are found.Comment: 20 Pages, 3 Figures, accepted for publication in Class. and Quantum Gravit

    Extended Skyrme Equation of State in asymmetric nuclear matter

    Get PDF
    We present a new equation of state for infinite systems (symmetric, asymmetric and neutron matter) based on an extended Skyrme functional constrained by microscopic Brueckner-Bethe-Goldstone results. The resulting equation of state reproduces with very good accuracy the main features of microscopic calculations and it is compatible with recent measurements of two times Solar-mass neutron stars. We provide all necessary analytical expressions to facilitate a quick numerical implementation of quantities of astrophysical interest

    Nonlinear growth of zonal flows by secondary instability in general magnetic geometry

    Full text link
    We present a theory of the nonlinear growth of zonal flows in magnetized plasma turbulence, by the mechanism of secondary instability. The theory is derived for general magnetic geometry, and is thus applicable to both tokamaks and stellarators. The predicted growth rate is shown to compare favorably with nonlinear gyrokinetic simulations, with the error scaling as expected with the small parameter of the theory.Comment: New J. Phys. 201
    corecore