317 research outputs found

    Optimization of green ammonia distribution systems for intercontinental energy transport

    Get PDF
    Green ammonia is a promising hydrogen derivative which enables intercontinental transport of dispatchable renewable energy. This research describes the development of a model which optimizes a global green ammonia network, considering the costs of production, storage, and transport. In generating the model, we show economies of scale for green ammonia production are small beyond 1 million tonnes per annum (MMTPA), although benefits accrue up to a production rate of 10 MMTPA if a production facility is serviced by a new port or requires a long pipeline. The model demonstrates that optimal sites for ammonia production require not only an excellent renewable resource but also ample land from which energy can be harvested. Land limitations constrain project size in otherwise optimal locations and force production to more expensive sites. Comparison of current crude oil markets to future ammonia markets reveals a trend away from global supply hubs and toward demand centers serviced by regional production

    NICE: Robust Scheduling through Reinforcement Learning-Guided Integer Programming

    Full text link
    Integer programs provide a powerful abstraction for representing a wide range of real-world scheduling problems. Despite their ability to model general scheduling problems, solving large-scale integer programs (IP) remains a computational challenge in practice. The incorporation of more complex objectives such as robustness to disruptions further exacerbates the computational challenge. We present NICE (Neural network IP Coefficient Extraction), a novel technique that combines reinforcement learning and integer programming to tackle the problem of robust scheduling. More specifically, NICE uses reinforcement learning to approximately represent complex objectives in an integer programming formulation. We use NICE to determine assignments of pilots to a flight crew schedule so as to reduce the impact of disruptions. We compare NICE with (1) a baseline integer programming formulation that produces a feasible crew schedule, and (2) a robust integer programming formulation that explicitly tries to minimize the impact of disruptions. Our experiments show that, across a variety of scenarios, NICE produces schedules resulting in 33\% to 48\% fewer disruptions than the baseline formulation. Moreover, in more severely constrained scheduling scenarios in which the robust integer program fails to produce a schedule within 90 minutes, NICE is able to build robust schedules in less than 2 seconds on average.Comment: Accepted in 36th AAAI Conference. 7 pages + 2 pages appendix, 1 figure. Code available at https://github.com/nsidn98/NIC

    Reaction: “Green” Ammonia Production

    Get PDF
    Ammonia production currently accounts for over 1.8% of the world’s consumption of fossil fuels and consequently over 1% of carbon dioxide emissions. The current production of ~180Mt/year is predicted to increase to ~270Mt/year by 2050 [1]; understandable given that over 80% of all ammonia produced is used for fertilisers. These predictions, combined with the requirement of net-zero carbon dioxide emissions for the 2°C scenario mean that there is an environmental imperative to decarbonise industrial ammonia production methods. Currently, steam methane reforming or (to a lesser extent) coal gasification are used to provide the hydrogen component of the syngas. Three possible methods are currently being considered to de-carbonisation the process namely: (i) conventional production with sequestration of the carbon dioxide, (ii) hydrogen production via electrification of water using renewable energies (wind, solar and tidal wave, etc) with adaptation of a small scale modified Haber-Bosch process as eHB, and (iii) development of alternative methods of production (i.e. electrochemical). While designing new ammonia plants with integrated carbon capture and storage (CCS) or retrofitting CCS to conventional plants does have notable potential, in this paper we will focus on the latter two other production methods mentioned above. The rationale for this is that, despite the fact that this method could play a part in production in the future, the cost of this method may be uncompetitive due to the dramatic falling cost of renewable energy

    Neutron Scattering Study of Spin Density Wave Order in the Superconducting State of Excess-Oxygen-Doped La2CuO4+y

    Full text link
    We report neutron scattering measurements of spin density wave order within the superconducting state of a single crystal of predominately stage-4 La2CuO4+y with a Tc(onset) of 42 K. The low temperature elastic magnetic scattering is incommensurate with the lattice and is characterized by long-range order in the copper-oxide plane with the spin direction identical to that in the insulator. Between neighboring planes, the spins exhibit short-range correlations with a stacking arrangement reminiscent of that in the undoped antiferromagnetic insulator. The elastic magnetic peak intensity appears at the same temperature within the errors as the superconductivity, suggesting that the two phenomena are strongly correlated. These observations directly reveal the persistent influence of the antiferromagnetic order as the doping level increases from the insulator to the superconductor. In addition, our results confirm that spin density wave order for incommensurabilities near 1/8 is a robust feature of the La2CuO4-based superconductors.Comment: 14 pages, LaTeX, includes 8 figure

    Survival benefit associated with early detection of spontaneous bacterial peritonitis in veteran inpatients with cirrhotic ascites

    Get PDF
    Background: Spontaneous bacterial peritonitis (SBP) is common in hospitalized cirrhotic patients with ascites and carries high mortality. This study aimed to determine whether early diagnostic paracentesis (EDP) \u3c12 h of hospitalization conveys an intermediate-term (6-month) survival benefit in cirrhotic patients diagnosed with SBP. Methods: Consecutive US veterans with cirrhosis diagnosed with SBP over 13 years at a single VA medical center were reviewed retrospectively. Kaplan-Meyer analyses assessed the effects of EDP on survival. Results: A total of 79 cirrhotic patients were diagnosed with SBP (61.8 ± 8.8 years, Conclusions: EDP is associated with improved 6-month mortality in cirrhotic patients with ascites. In this veteran cohort, EDP was as important as MELD as a predictor of intermediate-term survival

    Topological doping and the stability of stripe phases

    Full text link
    We analyze the properties of a general Ginzburg-Landau free energy with competing order parameters, long-range interactions, and global constraints (e.g., a fixed value of a total ``charge'') to address the physics of stripe phases in underdoped high-Tc and related materials. For a local free energy limited to quadratic terms of the gradient expansion, only uniform or phase-separated configurations are thermodynamically stable. ``Stripe'' or other non-uniform phases can be stabilized by long-range forces, but can only have non-topological (in-phase) domain walls where the components of the antiferromagnetic order parameter never change sign, and the periods of charge and spin density waves coincide. The antiphase domain walls observed experimentally require physics on an intermediate lengthscale, and they are absent from a model that involves only long-distance physics. Dense stripe phases can be stable even in the absence of long-range forces, but domain walls always attract at large distances, i.e., there is a ubiquitous tendency to phase separation at small doping. The implications for the phase diagram of underdoped cuprates are discussed.Comment: 18 two-column pages, 2 figures, revtex+eps

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    Cardiac Gated Computed Tomography Used to Confirm Iatrogenic Aortic Valve Leaflet Perforation after Mitral Valve Replacement

    Get PDF
    Aortic insufficiency from iatrogenic valve perforation from nonaortic valve operations is rarely reported despite the prevalence of these procedures. Rapid diagnosis of these defects is essential to prevent deterioration of cardiac function. In this paper, we describe a young man who reported to our institution after two open cardiac surgeries with new aortic regurgitation found to be due to an iatrogenic perforation of his noncoronary aortic valve cusp. This defect was not appreciated by previous intraoperative transesophageal echocardiography and was inadequately visualized on follow-up transthoracic and transesophageal echocardiograms. In contrast, cardiac gated computed tomography clearly visualized the defect and its surrounding structures. This case highlights the utility of cardiac gated computed tomography for cases of suspected valvular perforation when echocardiography is not readily available or inadequate imaging is obtained

    Techno-Economic Aspects of Production, Storage and Distribution of Ammonia

    Get PDF
    The cost of green ammonia is determined primarily by its production cost, but it is also influenced by the cost of distribution and storage. Production costs are a function of plant location, size, and whether the plant is islanded or semi-islanded, that is whether the power source is variable renewable energy (VRE) or grid electricity. Capital costs for a green ammonia plant consist of equipment for the production of hydrogen (electrolyzer) and nitrogen (air separation), ammonia synthesis (Haber–Bosch, compressors and separators) and storage. Operating costs are mainly due to power consumption. The electrolyzer dominates both capital and operating costs in the manufacture of green ammonia. Ammonia is stored in either pressurized or refrigerated vessels with the latter preferred for large scale storage. Distribution of ammonia may involve several transport modes depending on the location of the production and consumption sites. Inland transport can involve pipelines, trains, and trucks, and offshore shipping is generally done with medium, large or very large gas carrier vessels with refrigerated tanks. A case study to supply a fleet of 36 ultralarge container vessels (ULCVs) operating between the ports of Shanghai and Rotterdam is used to exemplify the combination of production, storage and transportation costs
    corecore