248 research outputs found

    ROBOTIC MOTION PLANNING USING CONVEX OPTIMIZATION METHODS

    Get PDF
    Collision avoidance techniques tend to derive the robot away of the obstacles in minimal total travel distance. Most ofthe collision avoidance algorithms have trouble get stuck in a local minimum. A new technique is to avoid local minimum in convexoptimization-based path planning. Obstacle avoidance problem is considered as a convex optimization problem under system state andcontrol constraints. The idea is by considering the obstacles as a convex set of points which represents the obstacle that encloses inminimum volume ellipsoid, also the addition of the necessary offset distance and the modified motion path is presented. In the analysis,the results demonstrated the effectiveness of the suggested motion planning by using the convex optimization technique

    CASE STUDY FOR MIGRATION FROM ON PREMISE TO CLOUD

    Get PDF
    The cloud computing has acquired a great deal of attraction, the possibility for minimizing over and under provisioningthrough enabling a flexible sharing resource and allocation is still large. In this article, a complete analysis towards development ofmigration method from on premise to cloud will be presented. First we define cloud computing that includes three service models;platform, infrastructure, and software as a service over a network connection. This work demonstrates the issues which the decisionmakers are facing in the case of evaluating the feasibility of the migration legacy system in organization into cloud computing.Furthermore, describes our technology toolkit, which has developed to support this process. The efficiency of the proposed technologytoolkit has being evaluated under testing as a case study that is exploring options to choosing deployment and cloud service models

    The Concept of Building a Model of the National Blood Information System

    Get PDF
    The development of modern information technologies in medicine makes actually the creation of the nationalInformation Systems (IS) for joint activities of medical institutions, improve the quality of health services and improvemanagement in the health sector. One of the components of healthcare is the system of Blood Service (BS). In this work the concept ofbuilding the national system is considered on example of the IS of BS. The national IS of BS aims to track relevant information onindicators of the quality of blood products through information integration BS establishments, makes it possible to increase thelevel of infectious safety and quality of transfusion care. The models of integration IS of BS are offered on the conceptual level inthis work for information exchange organization between BS establishments. The analysis of structures of models of integratedsystems is carried out to select the rational national IS of BS

    Recent progress in the applications of silica-based nanoparticles

    Get PDF
    Functionalized silica nanoparticles (SiO(2) NPs) have attracted great attention due to their promising distinctive, versatile, and privileged physiochemical characteristics. These enhanced properties make this type of functionalized nanoparticles particularly appropriate for different applications. A lack of reviews that summarizes the fabrications of such nanomaterials and their different applications in the same work has been observed in the literature. Therefore, in this work, we will discuss the recent signs of progress in the fabrication of functionalized silica nanoparticles and their attractive applications that have been extensively highlighted (advanced catalysis, drug-delivery, biomedical applications, environmental remediation applications, and wastewater treatment). These applications have been selected for demonstrating the role of the surface modification step on the various properties of the silica surface. In addition, the current challenges in the applications of functionalized silica nanoparticles and corresponding strategies to discuss these issues and future perspectives for additional improvement have been addressed

    Preparation and Characterization of Magnetite Talc (Fe3_{3}O4_{4}@Talc) Nanocomposite as an Effective Adsorbent for Cr(VI) and Alizarin Red S Dye

    Get PDF
    In this work, the adsorption of Cr(VI) ions and the organic dye Alizarin Red S (ARS) was investigated using magnetite talc (Fe3_{3}O4_{4}@Talc) nanocomposite. Different characterization techniques such as scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray Diffraction (XRD), and thermogravimetric analysis (TGA) were used to demonstrate the physical and chemical properties of the fabricated Fe3_{3}O4_{4}@Talc nanocomposite. In addition, the adsorption isothermic, kinetic, and thermodynamic properties were illustrated. The results demonstrate that the investigated adsorption processes obeyed the Langmuir isotherm model for Cr(VI) and the Freundlich isotherm model for ARS dye, with a maximum adsorption capacity of 13.5 and 11.76 mg·g1^{-1}, respectively, controlled by pseudo second-order kinetics. Regeneration and reusability studies demonstrated that the prepared Fe3_{3}O4_{4}@Talc nanocomposite is a promising and stable adsorbent with considerable reusability potential

    Synthesis of Ni-Fe-CO3_3 layered double hydroxide as Effective Adsorbent to remove Cr(VI) and ARS-dye from aqueous media

    Get PDF
    Ni2^2/Fe3^{3+}LDH, (Ni-Fe-CO3 LDH) with Ni/Fe molar ratio 3.0 was synthesized by co-precipitation for the remediation of chromium (VI), and Alizarine Red-S (ARS-dye) as anionic species. The investigated adsorbent was characterized by TGA, SEM, XRD, BET and FTIR. The effect of the hydrogen ion concentration of the medium, shaking time, ARS-dye and/or Cr(VI) concentration and adsorbents mass on the process was studied. The results of Ni-Fe-CO3_3 LDH fitted well with the pseudo-second-order model. Langmuir isotherm is more favor than the Freundlich isotherm with maximum capacity (QmaxQ_{max}) of 69.9 and 6.1 mg/g for ARS-dye and Cr(VI), respectively

    Efficient, Recyclable, and Heterogeneous Base Nanocatalyst for Thiazoles with a Chitosan-Capped Calcium Oxide Nanocomposite

    Get PDF
    Calcium oxide (CaO) nanoparticles have recently gained much interest in recent research due to their remarkable catalytic activity in various chemical transformations. In this article, a chitosan calcium oxide nanocomposite was created by the solution casting method under microwave irradiation. The microwave power and heating time were adjusted to 400 watts for 3 min. As it suppresses particle aggregation, the chitosan (CS) biopolymer acted as a metal oxide stabilizer. In this study, we aimed to synthesize, characterize, and investigate the catalytic potency of chitosan–calcium oxide hybrid nanocomposites in several organic transformations. The produced CS–CaO nanocomposite was analyzed by applying different analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). In addition, the calcium content of the nanocomposite film was measured using energy-dispersive X-ray spectroscopy (EDS). Fortunately, the CS–CaO nanocomposite (15 wt%) was demonstrated to be a good heterogeneous base promoter for high-yield thiazole production. Various reaction factors were studied to maximize the conditions of the catalytic technique. High reaction yields, fast reaction times, and mild reaction conditions are all advantages of the used protocol, as is the reusability of the catalyst; it was reused multiple times without a significant loss of potency

    Graphene Oxide@Heavy Metal Ions (GO@M) Complex Simulated Waste as an Efficient Adsorbent for Removal of Cationic Methylene Blue Dye from Contaminated Water

    Get PDF
    Graphene oxide (GO) was heavily used in the adsorption process of various heavy metal ions (such as copper (Cu) and iron (Fe) ions), resulting in a huge waste quantity of graphene oxide@metal ions complex. In this research, the authors try to solve this issue. Herein, the GO surface was loaded with divalent (Cu2+) and trivalent (Fe3+) heavy metal ions as a simulated waste of the heavy metal in various removal processes to form GO@Cu and (GO@Fe) composites, respectively. After that, the previous nanocomposites were used to remove cationic methylene blue (MB) dye. The prepared composites were characterized with a scanning electron microscope (SEM), transition electron microscope (TEM), Fourier transmission infrared (FTIR), Raman, and energy-dispersive X-ray (EDS) before and after the adsorption process. Various adsorption factors of the two composites towards MB-dye were investigated. Based on the adsorption isotherm information, the adsorption process of MB-dye is highly fitted with the Langmuir model with maximum capacities (mg g−1) (384.62, GO@Cu) and (217.39, GO@Fe). According to the thermodynamic analysis, the adsorption reaction of MB-species over the GO@Cu is exothermic and, in the case of GO@Fe, is endothermic. Moreover, the two composites presented excellent selectivity of adsorption of the MB-dye from the MB/MO mixtur

    Synthesis and greener pastures biological study of bis-thiadiazoles as potential Covid-19 drug candidates

    Get PDF
    A novel series of bis- (Abdelhamid et al., 2017, Banerjee et al., 2018, Bharanidharan et al., 2022)thiadiazoles was synthesized from the reaction of precursor dimethyl 2,2′-(1,2-diphenylethane-1,2-diylidene)-bis(hydrazine-1-carbodithioate) and hydrazonyl chlorides in ethanol under ultrasonic irradiation. Spectral tools (IR. NMR, MS, elemental analyses, molecular dynamic simulation, DFT and LUMO and HOMO) were used to elucidate the structure of the isolated products. Molecular docking for the precursor, 3 and ligands 6a-i to two COVID-19 important proteins Mpro^{pro} and RdRp was compared with two approved drugs, Remdesivir and Ivermectin. The binding affinity varied between the ligands and the drugs. The highest recorded binding affinity of 6c with Mpro^{pro} was (−9.2 kcal/mol), followed by 6b and 6a, (−8.9 and −8.5 kcal/mol), respectively. The lowest recorded binding affinity was (−7.0 kcal/mol) for 6 g. In comparison, the approved drugs showed binding affinity (−7.4 and −7.7 kcal/mol), for Remdesivir and Ivermectin, respectively, which are within the range of the binding affinity of our ligands. The binding affinity of the approved drug Ivermectin against RdRp recoded the highest (−8.6 kcal/mol), followed by 6a, 6 h, and 6i are the same have (−8.2 kcal/mol). The lowest reading was found for compound 3 ligand (−6.3 kcal/mol). On the other side, the amino acids also differed between the compounds studied in this project for both the viral proteins. The ligand 6a forms three H-bonds with Thr 319(A), Sr 255(A) and Arg 457(A), whereas Ivermectin forms three H-bonds with His 41(A), Gly143(A) and Gln 18(A) for viral Mpro^{pro}. The RdRp amino acids residues could be divided into four groups based on the amino acids that interact with hydrogen or hydrophobic interactions. The first group contained 6d, 6b, 6 g, and Remdesivir with 1–4 hydrogen bonds and hydrophobic interactions 1 to 10. Group 2 is 6a and 6f exhibited 1 and 3 hydrogen bonds and 15 and 14 hydrophobic interactions. Group 3 has 6e and Ivermectin shows 4 and 3 hydrogen bonds, respectively and 11 hydrophobic interactions for both compounds. The last group contains ligands 3, 6c, 6 h, and 6i gave 1–3 hydrogen bonds and 6c and 3 recorded the highest number of hydrophobic interactions, 14 for both 6c and 6 h. Pro Tox-II estimated compounds’ activities as Hepatoxic, Carcinogenic and Mutagenic, revealing that 6f-h were inactive in all five similar to that found with Remdesivir and Ivermectin. The drug-likeness prediction was carried out by studying physicochemical properties, lipophilicity, size, polarity, insolubility, unsaturation, and flexibility. Generally, some properties of the ligands were comparable to that of the standards used in this study, Remdesivir and Ivermectin
    corecore