2,007 research outputs found
Warm turbulence in the Boltzmann equation
We study the single-particle distributions of three-dimensional hard sphere
gas described by the Boltzmann equation. We focus on the steady homogeneous
isotropic solutions in thermodynamically open conditions, i.e. in the presence
of forcing and dissipation. We observe nonequilibrium steady state solution
characterized by a warm turbulence, that is an energy and particle cascade
superimposed on the Maxwell-Boltzmann distribution. We use a dimensional
analysis approach to relate the thermodynamic quantities of the steady state
with the characteristics of the forcing and dissipation terms. In particular,
we present an analytical prediction for the temperature of the system which we
show to be dependent only on the forcing and dissipative scales. Numerical
simulations of the Boltzmann equation support our analytical predictions.Comment: 4 pages, 5 figure
Superconductivity in the Cuprates as a Consequence of Antiferromagnetism and a Large Hole Density of States
We briefly review a theory for the cuprates that has been recently proposed
based on the movement and interaction of holes in antiferromagnetic (AF)
backgrounds. A robust peak in the hole density of states (DOS) is crucial to
produce a large critical temperature once a source of hole attraction is
identified. The predictions of this scenario are compared with experiments. The
stability of the calculations after modifying some of the original assumptions
is addressed. We find that if the dispersion is changed from an
antiferromagnetic band at half-filling to a tight binding
narrow band at , the main conclusions of the approach remain
basically the same i.e. superconductivity appears in the -channel and is enhanced by a large DOS. The main features
distinguishing these ideas from more standard theories based on
antiferromagnetic correlations are here discussed.Comment: RevTex, 7 pages, 5 figures are available on reques
Ordered droplet structures at the liquid crystal surface and elastic-capillary colloidal interactions
We demonstrate a variety of ordered patterns, including hexagonal structures
and chains, formed by colloidal particles (droplets) at the free surface of a
nematic liquid crystal (LC). The surface placement introduces a new type of
particle interaction as compared to particles entirely in the LC bulk. Namely,
director deformations caused by the particle lead to distortions of the
interface and thus to capillary attraction. The elastic-capillary coupling is
strong enough to remain relevant even at the micron scale when its
buoyancy-capillary counterpart becomes irrelevant.Comment: 10 pages, 3 figures, to be published in Physical Review Letter
Lyotropic chromonic liquid crystal semiconductors for water-solution processable organic electronics
We propose lyotropic chromonic liquid crystals (LCLCs) as a distinct class of
materials for organic electronics. In water, the chromonic molecules stack on
top of each other into elongated aggregates that form orientationally ordered
phases. The aligned aggregated structure is preserved when the material is
deposited onto a substrate and dried. The dried LCLC films show a strongly
anisotropic electric conductivity of semiconductor type. The field-effect
carrier mobility measured along the molecular aggregates in unoptimized films
of LCLC V20 is 0.03 cm^2 V^(-1) s^(-1). Easy processibility, low cost, and high
mobility demonstrate the potential of LCLCs for microelectronic applications
Surface alignment and anchoring transitions in nematic lyotropic chromonic liquid crystal
The surface alignment of lyotropic chromonic liquid crystals (LCLCs) can be
not only planar (tangential) but also homeotropic, with self-assembled
aggregates perpendicular to the substrate, as demonstrated by mapping optical
retardation and by three-dimensional imaging of the director field. With time,
the homeotropic nematic undergoes a transition into a tangential state. The
anchoring transition is discontinuous and can be described by a double-well
anchoring potential with two minima corresponding to tangential and homeotropic
orientation.Comment: Accepted for publication in Phys. Rev. Lett. (Accepted Wednesday Jun
02, 2010
X-ray diffraction measurements of the c-axis Debye-Waller factors of YBa2Cu3O7 and HgBa2CaCu2O6
We report the first application of x-rays to the measurement of the
temperature dependent Bragg peak intensities to obtain Debye-Waller factors on
high-temperature superconductors. Intensities of (0,0,l) peaks of YBa2Cu3O7 and
HgBa2CaCu2O6 thin films are measured to obtain the c-axis Debye-Waller factors.
While lattice constant and some Debye-Waller factor measurements on high Tc
superconductors show anomalies at the transition temperature, our measurements
by x-ray diffraction show a smooth transition of the c-axis Debye-Waller
factors through T. This suggests that the dynamic displacements of the
heavy elements along the c-axis direction in these compounds do not have
anomalies at Tc. This method in combination with measurements by other
techniques will give more details concerning dynamics of the lattice.Comment: 4 pages, 2 figures. To be published in Physical Review B (Brief
Report
Comparison of 32-site exact diagonalization results and ARPES spectral functions for the AFM insulator
We explore the success of various versions of the one-band t-J model in
explaining the full spectral functions found in angle-resolved photoemission
spectra for the prototypical, quasi two-dimensional, tetragonal,
antiferromagnetic insulator . After presenting arguments
justifying our extraction of from the experimental data, we rely
on exact-diagonalization results from studies of a square 32-site lattice, the
largest cluster for which such information is presently available, to perform
this comparison. Our work leads us to believe that (i) a one-band model that
includes hopping out to third-nearest neighbours, as well three-site,
spin-dependent hopping, can indeed explain not only the dispersion relation,
but also the quasiparticle lifetimes -- only in the neighbourhood of do we find disagreement; (ii) an energy-dependent broadening
function, , is important in accounting for the
incoherent contributions to the spectral functions.Comment: 8 pages, Revtex
Single Spin Superconductivity: Formulation and Ginzburg-Landau Theory
We describe a novel superconducting phase that arises due to a pairing
instability of the half-metallic antiferromagnetic (HM AFM) normal state. This
single spin superconducting (SSS) phase contains broken time reversal symmetry
in addition to broken gauge symmetry, the former due to the underlying magnetic
order in the normal state. A classification of normal state symmetries leads to
the conclusion that the HM AFM normal phase whose point group contains the
inversion operator contains the least symmetry possible which still allows for
a zero momentum pairing instability. The Ginzburg-Landau free energy for the
superconducting order parameter is constructed consistent with the symmetry of
the normal phase, electromagnetic gauge invariance and the crystallographic
point group symmetry including inversion. For cubic, hexagonal and tetragonal
point groups, the possible symmetries of the superconducting phase are
classified, and the free energy is used to construct a generalized phase
diagram. We identify the leading candidate out of the possible SSS phases for
each point group. The symmetry of the superconducting phase is used to
determine the cases where the gap function has generic zeros (point or line
nodes) on the Fermi surface. Such nodes always occur, hence thermodynamic
properties will have power-law behavior at low temperature.Comment: 39 pages, RevTeX, 4 PostScript figures included, submitted to Phys.
Rev.
Spectral density for a hole in an antiferromagnetic stripe phase
Using variational trial wave function based on the string picture we study
the motion of a single mobile hole in the stripe phase of the doped
antiferromagnet. The holes within the stripes are taken to be static, the
undoped antiferromagnetic domains in between the hole stripes are assumed to
have alternating staggered magnetization, as is suggested by neutron scattering
experiments. The system is described by the t-t'-t''-J model with realistic
parameters and we compute the single particle spectral density.Comment: RevTex-file, 9 PRB pages with 15 .eps and .gif files. To appear in
PRB. Hardcopies of figures (or the entire manuscript) can be obtained by
e-mail request to: [email protected]
Density-induced BCS to Bose-Einstein crossover
We investigate the zero-temperature BCS to Bose-Einstein crossover at the
mean-field level, by driving it with the attractive potential and the particle
density.We emphasize specifically the role played by the particle density in
this crossover.Three different interparticle potentials are considered for the
continuum model in three spatial dimensions, while both s- and d-wave solutions
are analyzed for the attractive (extended) Hubbard model on a two-dimensional
square lattice. For this model the peculiar behavior of the crossover for the
d-wave solution is discussed.In particular, in the strong-coupling limit when
approaching half filling we evidence the occurrence of strong correlations
among antiparallel-spin fermions belonging to different composite bosons, which
give rise to a quasi-long-range antiferromagnetic order in this limit.Comment: 10 pages, 5 enclosed figure
- …
