18,102 research outputs found
Spin-axis attitude estimation and magnetometer bias determination for the AMPTE mission
Algorithms were developed for magnetometer biases and spin axis attitude calculation. Numerical examples of the performance of the algorithm are given
Theory of cooling by flow through narrow pores
We consider the possibility of adding a stage to a dilution refrigerator to
provide additional cooling by ``filtering out'' hot atoms. Three methods are
considered: 1) Effusion, where holes having diameters larger than a mean-free
path allow atoms to pass through easily; 2) Particle waveguide-like motion
using very narrow channels that greatly restrict the quantum states of the
atoms in a channel. 3) Wall-limited diffusion through channels, in which the
wall scattering is disordered so that local density equilibrium is established
in a channel. We assume that channel dimension are smaller than the mean-free
path for atom-atom interactions. The particle waveguide and the wall-limited
diffusion methods using channels on order of the de Broglie wavelength give
cooling. Recent advances in nano-filters give this method some hope of being
practical.Comment: 10 pages, 3 figures. Corrected typos and made some minor wording
change
On the chemical composition of L-chondrites
Radiochemical neutron activation analysis of Ag, As, Au, Bi, Co, Cs, Ga, In, Rb, Sb, Te, Tl, and Zn and major element data in 14 L4-6 and 3 LL5 chondrites indicates that the L group is unusually variable and may represent at least 2 subgroups differing in formation history. Chemical trends in the S/Fe rich subgroup support textural evidence indicating late loss of a shock formed Fe-Ni-S melt; the S/Fe poor subgroup seemingly reflects nebular fractionation only. Highly mobile In and Zn apparently reflect shock induced loss from L chondrites. However, contrasting chemical trends in several L chondrite sample sets indicate that these meteorites constitute a more irregular sampling of, or more heterogeneous parent material than do carbonaceous or enstatite chondrites. Data for 15 chondrites suggest higher formation temperatures and/or degrees of shock than for LL5 chondrites
Carrier-induced ferromagnetism in n-type ZnMnAlO and ZnCoAlO thin films at room temperature
The realization of semiconductors that are ferromagnetic above room
temperature will potentially lead to a new generation of spintronic devices
with revolutionary electrical and optical properties. Transition temperatures
in doped ZnO are high but, particularly for Mn doping, the reported moments
have been small. We show that by careful control of both oxygen deficiency and
aluminium doping the ferromagnetic moments measured at room temperature in
n-type ZnMnO and ZnCoO are close to the ideal values of 5mB and 3mB
respectively. Furthermore a clear correlation between the magnetisation per
transition metal ion and the ratio of the number of carriers to the number of
transition metal donors was established as is expected for carrier induced
ferromagnetism for both the Mn and Co doped films. The dependence of the
magnetisation on carrier density is similar to that predicted for the
transition temperature for a dilute magnetic semiconductor in which the
exchange between the transition metal ions is through the free carriers.Comment: 14 pages pd
Space biology initiative program definition review. Trade study 1: Automation costs versus crew utilization
A significant emphasis upon automation within the Space Biology Initiative hardware appears justified in order to conserve crew labor and crew training effort. Two generic forms of automation were identified: automation of data and information handling and decision making, and the automation of material handling, transfer, and processing. The use of automatic data acquisition, expert systems, robots, and machine vision will increase the volume of experiments and quality of results. The automation described may also influence efforts to miniaturize and modularize the large array of SBI hardware identified to date. The cost and benefit model developed appears to be a useful guideline for SBI equipment specifiers and designers. Additional refinements would enhance the validity of the model. Two NASA automation pilot programs, 'The Principal Investigator in a Box' and 'Rack Mounted Robots' were investigated and found to be quite appropriate for adaptation to the SBI program. There are other in-house NASA efforts that provide technology that may be appropriate for the SBI program. Important data is believed to exist in advanced medical labs throughout the U.S., Japan, and Europe. The information and data processing in medical analysis equipment is highly automated and future trends reveal continued progress in this area. However, automation of material handling and processing has progressed in a limited manner because the medical labs are not affected by the power and space constraints that Space Station medical equipment is faced with. Therefore, NASA's major emphasis in automation will require a lead effort in the automation of material handling to achieve optimal crew utilization
Abell 2111: An Optical and Radio Study of the Richest Butcher-Oemler Cluster
We present an in-depth analysis of the Butcher-Oemler cluster A2111,
including new optical spectroscopy plus a deep Very Large Array (VLA) radio
continuum observation. These are combined with optical imaging from the Sloan
Digital Sky Survey (SDSS) to assess the activity and properties of member
galaxies. Prior X-ray studies have suggested A2111 is a head-on cluster merger,
a dynamical state which might be connected to the high level of activity
inferred from its blue fraction. We are able to directly assess this claim,
using our spectroscopic data to identify 95 cluster members among 196 total
galaxy spectra. These galaxy velocities do not themselves provide significant
evidence for the merger interpretation, however they are consistent with it
provided the system is viewed near the time of core passage and at a viewing
angle >~30 degrees different from the merger axis. The SDSS data allow us to
confirm the high blue fraction for A2111, f_b = 0.15 +/- 0.03 based on
photometry alone and f_b = 0.23 +/- 0.03 using spectroscopic data to remove
background galaxies. We are able to detect 175 optical sources from the SDSS in
our VLA radio data, of which 35 have redshift information. We use the SDSS
photometry to determine photometric redshifts for the remaining 140
radio-optical sources. In total we identify up to 26 cluster radio galaxies, 14
of which have spectroscopic redshifts. The optical spectroscopy and radio data
reveal a substantial population of dusty starbursts within the cluster. The
high blue fraction and prevalence of star formation is consistent with the
hypothesis that dynamically-active clusters are associated with more active
member galaxies than relaxed clusters.Comment: To appear in AJ; 53 pages including 10 figures and several long
table
Fluctuations and Correlations in Lattice Models for Predator-Prey Interaction
Including spatial structure and stochastic noise invalidates the classical
Lotka-Volterra picture of stable regular population cycles emerging in models
for predator-prey interactions. Growth-limiting terms for the prey induce a
continuous extinction threshold for the predator population whose critical
properties are in the directed percolation universality class. Here, we discuss
the robustness of this scenario by considering an ecologically inspired
stochastic lattice predator-prey model variant where the predation process
includes next-nearest-neighbor interactions. We find that the corresponding
stochastic model reproduces the above scenario in dimensions 1< d \leq 4, in
contrast with mean-field theory which predicts a first-order phase transition.
However, the mean-field features are recovered upon allowing for
nearest-neighbor particle exchange processes, provided these are sufficiently
fast.Comment: 5 pages, 4 figures, 2-column revtex4 format. Emphasis on the lattice
predator-prey model with next-nearest-neighbor interaction (Rapid
Communication in PRE
III-V Gate-all-around Nanowire MOSFET Process Technology: From 3D to 4D
In this paper, we have experimentally demonstrated, for the first time, III-V
4D transistors with vertically stacked InGaAs nanowire (NW) channels and
gate-all-around (GAA) architecture. Novel process technology enabling the
transition from 3D to 4D structure has been developed and summarized. The
successful fabrication of InGaAs lateral and vertical NW arrays has led to 4x
increase in MOSFET drive current. The top-down technology developed in this
paper has opened a viable pathway towards future low-power logic and RF
transistors with high-density III-V NWs
- …
