38 research outputs found
Basaltic diversity at the Apollo 12 landing site: Inferences from petrologic examinations of the soil sample 12003
A detailed petrologic survey has been made of 17 basaltic chips (sized between 1 and 10 mm) from the 12003 soil sample as part of an ongoing study of basaltic diversity at the Apollo 12 landing site. An attempt has been made to classify these samples according to the well-established grouping of olivine, pigeonite, ilmenite, and feldspathic basalts. Particular attention has been paid to variations in major, minor, and trace element mineral chemistry (determined by electron microprobe analysis and laser ablation ICP-MS), which may be indicative of particular basaltic suites and less susceptible to sampling bias than bulk sample characteristics. Examples of all three main (olivine, pigeonite, and ilmenite) basaltic suites have been identified within the 12003 soil. One sample is identified as a possible new addition to the feldspathic suite, which currently consists of only one other confirmed sample. Identification of additional feldspathic basalts strengthens the argument that they represent a poorly sampled basaltic flow local to the Apollo 12 site, rather than exotic material introduced to the site by impact mixing processes. Three samples are identified as representing members of one or two previously unrecognized basaltic suites
Recommended from our members
Are current dynamic water quality models too complex? A comparison of a new parsimonious phosphorus model, SimplyP, and INCA-P
Catchment-scale water quality models are becoming increasingly popular tools for exploring the potential effects of land management, land use change and climate change on water quality. However, the dynamic, catchment-scale nutrient models in common usage are complex, with many uncertain parameters requiring calibration, limiting their usability and robustness. A key question is whether this complexity is justified. To explore this, we have developed a parsimonious P model, SimplyP, incorporating a coupled rainfall-runoff model and a biogeochemical model able to simulate streamflow, suspended sediment, particulate and dissolved P dynamics. The model’s complexity is compared in a small rural catchment in northeast Scotland. For three land use classes, less than six SimplyP model parameters must be determined through calibration alone, the rest may be based on measurements; INCA-P has around 40 unmeasurable parameters. Despite simpler process-representation, SimplyP produced a slightly better dissolved P simulation during both calibration and validation, and produced similar long-term projections in response to changes in land management. Results support the hypothesis that INCA-P is overly complex for the study catchment. We hope our findings will help prompt wider model comparison exercises, as well as debate amongst the water quality modelling community as to whether today's models are fit for purpose. Simpler models such as SimplyP have the potential to be useful management and research tools, building blocks for future model development (prototype code is freely available), or benchmarks against which more complex models could be evaluated
Genetically inferred birthweight, height, and puberty timing and risk of osteosarcoma
INTRODUCTION: Several studies have linked increased risk of osteosarcoma with tall stature, high birthweight, and early puberty, although evidence is inconsistent. We used genetic risk scores (GRS) based on established genetic loci for these traits and evaluated associations between genetically inferred birthweight, height, and puberty timing with osteosarcoma. METHODS: Using genotype data from two genome-wide association studies, totaling 1039 cases and 2923 controls of European ancestry, association analyses were conducted using logistic regression for each study and meta-analyzed to estimate pooled odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses were conducted by case diagnosis age, metastasis status, tumor location, tumor histology, and presence of a known pathogenic variant in a cancer susceptibility gene. RESULTS: Genetically inferred higher birthweight was associated with an increased risk of osteosarcoma (OR =1.59, 95% CI 1.07-2.38, P = 0.02). This association was strongest in cases without metastatic disease (OR =2.46, 95% CI 1.44-4.19, P = 9.5 ×10-04). Although there was no overall association between osteosarcoma and genetically inferred taller stature (OR=1.06, 95% CI 0.96-1.17, P = 0.28), the GRS for taller stature was associated with an increased risk of osteosarcoma in 154 cases with a known pathogenic cancer susceptibility gene variant (OR=1.29, 95% CI 1.03-1.63, P = 0.03). There were no significant associations between the GRS for puberty timing and osteosarcoma. CONCLUSION: A genetic propensity to higher birthweight was associated with increased osteosarcoma risk, suggesting that shared genetic factors or biological pathways that affect birthweight may contribute to osteosarcoma pathogenesis
Genetically inferred birthweight, height, and puberty timing and risk of osteosarcoma
Introduction: Several studies have linked increased risk of osteosarcoma with tall stature, high birthweight, and early puberty, although evidence is inconsistent. We used genetic risk scores (GRS) based on established genetic loci for these traits and evaluated associations between genetically inferred birthweight, height, and puberty timing with osteosarcoma. Methods: Using genotype data from two genome-wide association studies, totaling 1039 cases and 2923 controls of European ancestry, association analyses were conducted using logistic regression for each study and meta-analyzed to estimate pooled odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses were conducted by case diagnosis age, metastasis status, tumor location, tumor histology, and presence of a known pathogenic variant in a cancer susceptibility gene. Results: Genetically inferred higher birthweight was associated with an increased risk of osteosarcoma (OR =1.59, 95% CI 1.07–2.38, P = 0.02). This association was strongest in cases without metastatic disease (OR =2.46, 95% CI 1.44–4.19, P = 9.5 ×10-04). Although there was no overall association between osteosarcoma and genetically inferred taller stature (OR=1.06, 95% CI 0.96–1.17, P = 0.28), the GRS for taller stature was associated with an increased risk of osteosarcoma in 154 cases with a known pathogenic cancer susceptibility gene variant (OR=1.29, 95% CI 1.03–1.63, P = 0.03). There were no significant associations between the GRS for puberty timing and osteosarcoma. Conclusion: A genetic propensity to higher birthweight was associated with increased osteosarcoma risk, suggesting that shared genetic factors or biological pathways that affect birthweight may contribute to osteosarcoma pathogenesis
Twenty years of coordination technologies: State-of-the-art and perspectives
Since complexity of inter- and intra-systems interactions is steadily increasing in modern application scenarios (e.g., the IoT), coordination technologies are required to take a crucial step towards maturity. In this paper we look back at the history of the COORDINATION conference in order to shed light on the current status of the coordination technologies there proposed throughout the years, in an attempt to understand success stories, limitations, and possibly reveal the gap between actual technologies, theoretical models, and novel application needs
Indexing Open Schemas
Significant work has been done towards achieving the goal of placing semistructured data on an equal footing with relational data. While much attention has been paid to performance issues, far less work has been done to address one of the fundamental issues of semistructured data: schema evolution
