2,104 research outputs found

    Bayesian Analysis of the Impact of Rainfall Data Product on Simulated Slope Failure for North Carolina Locations

    Get PDF
    In the past decades, many different approaches have been developed in the literature to quantify the load-carrying capacity and geotechnical stability (or the factor of safety, Fs) of variably saturated hillslopes. Much of this work has focused on a deterministic characterization of hillslope stability. Yet, simulated Fs values are subject to considerable uncertainty due to our inability to characterize accurately the soil mantles properties (hydraulic, geotechnical, and geomorphologic) and spatiotemporal variability of the moisture content of the hillslope interior. This is particularly true at larger spatial scales. Thus, uncertainty-incorporating analyses of physically based models of rain-induced landslides are rare in the literature. Such landslide modeling is typically conducted at the hillslope scale using gauge-based rainfall forcing data with rather poor spatiotemporal coverage. For regional landslide modeling, the specific advantages and/or disadvantages of gauge-only, radar-merged and satellite-based rainfall products are not clearly established. Here, we compare and evaluate the performance of the Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis (TRIGRS) model for three different rainfall products using 112 observed landslides in the period between 2004 and 2011 from the North Carolina Geological Survey database. Our study includes the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis Version 7 (TMPA V7), the North American Land Data Assimilation System Phase 2 (NLDAS-2) analysis, and the reference truth Stage IV precipitation. TRIGRS model performance was rather inferior with the use of literature values of the geotechnical parameters and soil hydraulic properties from ROSETTA using soil textural and bulk density data from SSURGO (Soil Survey Geographic database). The performance of TRIGRS improved considerably after Bayesian estimation of the parameters with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm using Stage IV precipitation data. Hereto, we use a likelihood function that combines binary slope failure information from landslide event and null periods using multivariate frequency distribution-based metrics such as the false discovery and false omission rates. Our results demonstrate that the Stage IV-inferred TRIGRS parameter distributions generalize well to TMPA and NLDAS-2 precipitation data, particularly at sites with considerably larger TMPA and NLDAS-2 rainfall amounts during landslide events than null periods. TRIGRS model performance is then rather similar for all three rainfall products. At higher elevations, however, the TMPA and NLDAS-2 precipitation volumes are insufficient and their performance with the Stage IV-derived parameter distributions indicates their inability to accurately characterize hillslope stability

    Modeling the impact of climate change and land use change scenarios on soil erosion at the Minab Dam Watershed

    Get PDF
    Climate and land use change can influence susceptibility to erosion and consequently land degradation. The aim of this study was to investigate in the baseline and a future period, the land use and climate change effects on soil erosion at an important dam watershed occupying a strategic position on the narrow Strait of Hormuz. The future climate change at the study area was inferred using statistical downscaling and validated by the Canadian earth system model (CanESM2). The future land use change was also simulated using the Markov chain and artificial neural network, and the Revised Universal Soil Loss Equation was adopted to estimate soil loss under climate and land use change scenarios. Results show that rainfall erosivity (R factor) will increase under all Representative Concentration Pathway (RCP) scenarios. The highest amount of R was 40.6 MJ mm ha(-1) h(-1)y(-1) in 2030 under RPC 2.6. Future land use/land cover showed rangelands turning into agricultural lands, vegetation cover degradation and an increased soil cover among others. The change of C and R factors represented most of the increase of soil erosion and sediment production in the study area during the future period. The highest erosion during the future period was predicted to reach 14.5 t ha(-1) y(-1), which will generate 5.52 t ha(-1) y(-1) sediment. The difference between estimated and observed sediment was 1.42 t ha(-1) year(-1) at the baseline period. Among the soil erosion factors, soil cover (C factor) is the one that watershed managers could influence most in order to reduce soil loss and alleviate the negative effects of climate change.FCT-Foundation for Science and Technology - PTDC/GES-URB/31928/2017; FEDER ALG-01-0247-FEDER-037303info:eu-repo/semantics/publishedVersio

    Sediment removal by prairie filter strips in row-cropped ephemeral watersheds

    Get PDF
    Twelve small watersheds in central Iowa were used to evaluate the effectiveness of prairie filter strips (PFS) in trapping sediment from agricultural runoff. Four treatments with PFS of different size and location (100% rowcrop, 10% PFS of total watershed area at footslope, 10% PFS at footslope and in contour strips, 20% PFS at footslope and in contour strips) arranged in a balanced incomplete block design were seeded in July 2007. All watersheds were in bromegrass ( L.) for at least 10 yr before treatment establishment. Cropped areas were managed under a no-till, 2-yr corn ( L.)-soybean [ (L.) Merr.] rotation beginning in 2007. About 38 to 85% of the total sediment export from cropland occurred during the early growth stage of rowcrop due to wet field conditions and poor ground cover. The greatest sediment load was observed in 2008 due to the initial soil disturbance and gradually decreased thereafter. The mean annual sediment yield through 2010 was 0.36 and 8.30 Mg ha for the watersheds with and without PFS, respectively, a 96% sediment trapping efficiency for the 4-yr study period. The amount and distribution of PFS had no significant impact on runoff and sediment yield, probably due to the relatively large width (37-78 m) of footslope PFS. The findings suggest that incorporation of PFS at the footslope position of annual rowcrop systems provides an effective approach to reducing sediment loss in runoff from agricultural watersheds under a no-till system

    A ranking of hydrological signatures based on their predictability in space

    Get PDF
    Hydrological signatures are now used for a wide range of purposes, including catchment classification, process exploration and hydrological model calibration. The recent boost in the popularity and number of signatures has however not been accompanied by the development of clear guidance on signature selection. Here we propose that exploring the predictability of signatures in space provides important insights into their drivers, their sensitivity to data uncertainties, and is hence useful for signature selection. We use three complementary approaches to compare and rank 15 commonly‐used signatures, which we evaluate in 671 US catchments from the CAMELS data set (Catchment Attributes and MEteorology for Large‐sample Studies). Firstly, we employ machine learning (random forests) to explore how attributes characterizing the climatic conditions, topography, land cover, soil and geology influence (or not) the signatures. Secondly, we use simulations of a conceptual hydrological model (Sacramento) to benchmark the random forest predictions. Thirdly, we take advantage of the large sample of CAMELS catchments to characterize the spatial auto‐correlation (using Moran's I) of the signature field. These three approaches lead to remarkably similar rankings of the signatures. We show i) that signatures with the noisiest spatial pattern tend to be poorly captured by hydrological simulations, ii) that their relationship to catchments attributes are elusive (in particular they are not correlated to climatic indices) and iii) that they are particularly sensitive to discharge uncertainties. We suggest that a better understanding of their drivers and better characterization of their uncertainties would increase their value in hydrological studies

    Parameter Sensitivity of the Noah-MP Land Surface Model with Dynamic Vegetation

    Get PDF
    The Noah land surface model with multiple parameterization options (Noah-MP) includes a routine for dynamic simulation of vegetation carbon assimilation and soil carbon decomposition processes. To use remote sensing observations of vegetation to constrain simulations from this model, it is necessary first to understand the sensitivity of the model to its parameters. This is required for efficient parameter estimation, which is both a valuable way to use observations and also a first or concurrent step in many state-updating data assimilation procedures. We use variance decomposition to assess the sensitivity of estimates of sensible heat, latent heat, soil moisture, and net ecosystem exchange made by certain standard Noah-MP configurations that include dynamic simulation of vegetation and carbon to forty-three primary user-specified parameters. This is done using thirty-two years' worth of data from ten international FluxNet sites. Findings indicate that there are five soil parameters and six (or more) vegetation parameters (depending on the model configuration) that act as primary controls on these states and fluxes

    Stopping a war: The fight of the French workers against the Moroccan campaign of 1925

    Get PDF
    https://stars.library.ucf.edu/prism/1288/thumbnail.jp

    MCOM 534 Video Production Editing

    Get PDF
    Course syllabus for MCOM 534 Video Production Editing Course description: Lab-based instruction and application of the theories and technique of non-linear digital video editing. Students conduct FireWire-based editing with DVCAM and Mini-DV source footage on Final Cut Pro platforms

    The Soviet union as a world power

    Get PDF
    https://stars.library.ucf.edu/prism/1063/thumbnail.jp
    corecore