728 research outputs found
Crossover Scaling Functions in One Dimensional Dynamic Growth Models
The crossover from Edwards-Wilkinson () to KPZ () type growth is
studied for the BCSOS model. We calculate the exact numerical values for the
and massgap for using the master equation. We predict
the structure of the crossover scaling function and confirm numerically that
and , with . KPZ type growth is
equivalent to a phase transition in meso-scopic metallic rings where attractive
interactions destroy the persistent current; and to endpoints of facet-ridges
in equilibrium crystal shapes.Comment: 11 pages, TeX, figures upon reques
The theoretical reflectance of X-rays from optical surfaces
The theoretical reflectance of X-rays from various materials and evaporated films is presented. A computer program was written that computes the reflected intensity as a function of the angle of the incident radiation. The quantities necessary to generate the efficiency and their effect on the data are demonstrated. Five materials were chosen for evaluation: (1) fused silica, (2) chromium, (3) beryllium, (4) gold, and (5) a thin layer contaminant. Fused silica is a versatile and common material; chromium has high reflection efficiency at X-ray wavelengths and is in the middle of the atomic number range; beryllium contains a single atomic shell and has a low range atomic number; gold contains multiple atomic shells and has a high atomic number; the contaminant is treated as a thin film in the calculations and results are given as a function of thickness for selected wavelengths. The theoretical results are compared to experimental data at lambda = 8.34 A
Does the quark-gluon plasma contain stable hadronic bubbles?
We calculate the thermodynamic potential of bubbles of hadrons embedded in
quark-gluon plasma, and of droplets of quark-gluon plasma embedded in hadron
phase. This is a generalization of our previous results to the case of non-zero
chemical potentials. As in the zero chemical potential case, we find that a
quark-gluon plasma in thermodynamic equilibrium may contain stable bubbles of
hadrons of radius fm. The calculations are performed within the
MIT Bag model, using an improved multiple reflection expansion. The results are
of relevance for neutron star phenomenology and for ultrarelativistic heavy ion
collisions.Comment: 12 pages including 8 figures. To appear in Phys. Rev.
Correlation of ISS Electric Potential Variations with Mission Operations
Spacecraft charging on the International Space Station (ISS) is caused by a complex combination of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. In this paper we provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations
Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes
Spacecraft charging of the International Space Station (ISS) is dominated by interaction of the US high voltage solar arrays with the F2-region ionosphere plasma environment. ISS solar array charging is enhanced in a high electron density environment due to the increased thermal electron currents to the edges of the solar cells. High electron temperature environments suppress charging due to formation of barrier potentials on the charged solar cell cover glass that restrict the charging currents to the cell edge [Mandell et al., 2003]. Environments responsible for strong solar array charging are therefore characterized by high electron densities and low electron temperatures. In support of the ISS space environmental effects engineering community, we are working to understand a number of features of solar array charging and to determine how well future charging behavior can be predicted from in-situ plasma density and temperature measurements. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that occur at ISS orbital altitudes (approximately 400 km) over time scales of days, the latitudes over which significant variations occur, and the time periods over which the disturbances persist once they start. This presentation provides examples of mid-latitude electron density and temperature disturbances at altitudes relevant to ISS using data sets and tools developed for our ISS plasma environment study. "Mid-latitude" is defined as the extra-tropical region between approx. 30 degrees to approx. 60 degrees magnetic latitude sampled by ISS over its 51.6 degree inclination orbit. We focus on geomagnetic storm periods because storms are well known drivers for disturbances in the ionospheric plasma environment
All-optical generation of states for "Encoding a qubit in an oscillator"
Both discrete and continuous systems can be used to encode quantum
information. Most quantum computation schemes propose encoding qubits in
two-level systems, such as a two-level atom or an electron spin. Others exploit
the use of an infinite-dimensional system, such as a harmonic oscillator. In
"Encoding a qubit in an oscillator" [Phys. Rev. A 64 012310 (2001)], Gottesman,
Kitaev, and Preskill (GKP) combined these approaches when they proposed a
fault-tolerant quantum computation scheme in which a qubit is encoded in the
continuous position and momentum degrees of freedom of an oscillator. One
advantage of this scheme is that it can be performed by use of relatively
simple linear optical devices, squeezing, and homodyne detection. However, we
lack a practical method to prepare the initial GKP states. Here we propose the
generation of an approximate GKP state by using superpositions of optical
coherent states (sometimes called "Schr\"odinger cat states"), squeezing,
linear optical devices, and homodyne detection.Comment: 4 pages, 3 figures. Submitted to Optics Letter
Chiral phase properties of finite size quark droplets in the Nambu--Jona-Lasinio model
Chiral phase properties of finite size hadronic systems are investigated
within the Nambu--Jona-Lasinio model. Finite size effects are taken into
account by making use of the multiple reflection expansion. We find that, for
droplets with relatively small baryon numbers, chiral symmetry restoration is
enhanced by the finite size effects. However the radius of the stable droplet
does not change much, as compared to that without the multiple reflection
expansion.Comment: RevTex4, 9 pages, 6 figures, to be published in Phys. Rev.
Correlation of ISS Electric Potential Variations with Mission Operations
Orbiting approximately 400 km above the Earth, the International Space Station (ISS) is a unique research laboratory used to conduct ground-breaking science experiments in space. The ISS has eight Solar Array Wings (SAW), and each wing is 11.7 meters wide and 35.1 meters long. The SAWs are controlled individually to maximize power output, minimize stress to the ISS structure, and minimize interference with other ISS operations such as vehicle dockings and Extra-Vehicular Activities (EVA). The Solar Arrays are designed to operate at 160 Volts. These large, high power solar arrays are negatively grounded to the ISS and collect charged particles (predominately electrons) as they travel through the space plasma in the Earth's ionosphere. If not controlled, this collected charge causes floating potential variations which can result in arcing, causing injury to the crew during an EVA or damage to hardware [1]. The environmental catalysts for ISS floating potential variations include plasma density and temperature fluctuations and magnetic induction from the Earth's magnetic field. These alone are not enough to cause concern for ISS, but when they are coupled with the large positive potential on the solar arrays, floating potentials up to negative 95 Volts have been observed. Our goal is to differentiate the operationally induced fluctuations in floating potentials from the environmental causes. Differentiating will help to determine what charging can be controlled, and we can then design the proper operations controls for charge collection mitigation. Additionally, the knowledge of how high power solar arrays interact with the environment and what regulations or design techniques can be employed to minimize charging impacts can be applied to future programs
Bright filter-free source of indistinguishable photon pairs
We demonstrate a high-brightness source of pairs of indistinguishable photons
based on a type-II phase-matched doubly-resonant optical parametric oscillator
operated far below threshold. The cavity-enhanced down-conversion output of a
PPKTP crystal is coupled into two single-mode fibers with a mode coupling
efficiency of 58%. The high degree of indistinguishability between the photons
of a pair is demonstrated by a Hong-Ou-Mandel interference visibility of higher
than 90% without any filtering at an instantaneous coincidence rate of 450 000
pairs/s per mW of pump power per nm of down-conversion bandwidth. For the
degenerate spectral mode with a linewidth of 7 MHz at 795 nm a rate of 70
pairs/(s mW MHz) is estimated, increasing the spectral brightness for
indistinguishable photons by two orders of magnitude compared to similar
previous sources.Comment: 7 pages, 3 figure
- …
