155 research outputs found

    State-Dependent Computation Using Coupled Recurrent Networks

    Get PDF
    Although conditional branching between possible behavioral states is a hallmark of intelligent behavior, very little is known about the neuronal mechanisms that support this processing. In a step toward solving this problem, we demonstrate by theoretical analysis and simulation how networks of richly interconnected neurons, such as those observed in the superficial layers of the neocortex, can embed reliable, robust finite state machines. We show how a multistable neuronal network containing a number of states can be created very simply by coupling two recurrent networks whose synaptic weights have been configured for soft winner-take-all (sWTA) performance. These two sWTAs have simple, homogeneous, locally recurrent connectivity except for a small fraction of recurrent cross-connections between them, which are used to embed the required states. This coupling between the maps allows the network to continue to express the current state even after the input that elicited that state iswithdrawn. In addition, a small number of transition neurons implement the necessary input-driven transitions between the embedded states. We provide simple rules to systematically design and construct neuronal state machines of this kind. The significance of our finding is that it offers a method whereby the cortex could construct networks supporting a broad range of sophisticated processing by applying only small specializations to the same generic neuronal circuit

    The macroeconomics of a financial Dutch disease

    Get PDF
    We describe the medium-run macroeconomic effects and long-run development consequences of a financial Dutch disease that may take place in a small developing country with abundant natural resources. The first move is in financial markets. An initial surge in foreign direct investment targeting natural resources sets in motion a perverse cycle between exchange rate appreciation and mounting short- and medium-term capital flows. Such a spiral easily leads to exchange rate volatility, capital reversals, and sharp macroeconomic instability. In the long run, macroeconomic instability and overdependence on natural resource exports dampen the development of nontraditional tradable goods sectors and curtail labor productivity dynamics. We advise the introduction of constraints to short- and medium-term capital flows to tame exchange rate/capital flows boom-and-bust cycles. We support the implementation of a developmentalist monetary policy targeting competitive nominal and real exchange rates in order to encourage product and export diversification

    2022 roadmap on neuromorphic computing and engineering

    Get PDF
    \ua9 2022 The Author(s). Published by IOP Publishing Ltd. Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018 calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community
    corecore