327 research outputs found
Effect of Long-Term Integrated Plant Nutrition System (IPNS) in Rice-Wheat Sequence on Soil Biological Health
Rice - wheat is the predominant cropping system especially in the mid hills zone of the state. The systemis over-exploitative of the natural resources and consequently leads to degradation in soil health and fertility.Assessment and regular monitoring of soil health is essential for sustainability and minimal environmentaldegradation. Soil quality consists of physical, chemical and biological components and their interaction with oneanother. The biological component of soil has been largely ignored so far, though is an important aspect tomanage sustainable agriculture, soil health and ecosystem. Numerous studies have been carried out on soilphysical and chemical aspects. But in depth analysis of the soil biological health has rarely done. Therefore, thepresent study was carried out in a long-term experiment on IPNS in rice – wheat cropping system during 2013-14at the Bhadiarkhar farm of the university. Twelve treatment combinations viz. T1 - Control (No fertilizer, nomanure), T2 - 50% NPK to both rice and wheat, T3 - 50% NPK to rice and 100% NPK to wheat, T4 - 75% NPK toboth rice and wheat, T5 - 100% NPK to both rice and wheat, T6 - 50% NPK + 50% N (FYM) to rice and 100%NPK to wheat, T7 - 75% NPK + 25% N (FYM) to rice and 75% NPK to wheat, T8 - 50% NPK + 50% N (wheat cutstraw) to rice and 100% NPK to wheat, T9 - 75% NPK + 25% N (wheat cut straw) to rice and 75% NPK to wheat,T10 - 50% NPK + 50% N (green manure) to rice and 100% NPK to wheat, T11 - 75% NPK + 25% N (greenmanure) to rice and 75% NPK to wheat and T12 -Farmers’ Practice (40% NPK and FYM 5 t/ha to both thecrops) were evaluated in a randomized block design with four replications. The application of organics viz FYM,wheat straw and green manure and chemical fertilizers increased the number of heterotrophic bacteria, fungi,actinomycetes, and nitrogen fixing bacteria significantly over the control. A definite build up of organic carbonand thereby microbial biomass carbon over its initial value of 0.6% was observed in all the treatments. Thehighest increase in organic carbon content over control and initial status was observed under T6 where 50% Nwas substituted through FYM during kharif followed by 100% NPK through fertilizers in rabi. The highestmicrobial biomass carbon was found under T8 where 50% N was substituted through wheat cut straw duringkharif followed by 100% NPK through fertilizers in wheat. Both dehydrogenase and phosphatase activities werestimulated by the application of organic manures and inorganic fertilizers over control. Organic fertilizers weremore effective than inorganic fertilizers in increasing the microbial activity. Among the organic sources, FYMand wheat straw were superior to green manure. Microbial index of the soil increased with increase in the levelof fertilization. The effect was more pronounced with organics than with inorganics. T6 where 50% NPK throughfertilizers and 50% N through FYM to rice and 100% NPK through fertilizers to wheat was applied had highestmicrobial index of soil. This was followed by T8 (50% NPK through fertilizers and 50% N through wheat straw torice and 100% NPK through fertilizers to wheat)
Mycobacterium tuberculosis monoarthritis in a child
A child with isolated Mycobacterium tuberculosis monoarthritis, with features initially suggesting oligoarthritis subtype of juvenile idiopathic arthritis, is presented. This patient illustrates the need to consider the possibility of tuberculosis as the cause of oligoarthritis in high-risk pediatric populations even in the absence of a tuberculosis contact history and without evidence of overt pulmonary disease
L-Ilf3 and L-NF90 Traffic to the Nucleolus Granular Component: Alternatively-Spliced Exon 3 Encodes a Nucleolar Localization Motif
Ilf3 and NF90, two proteins containing double-stranded RNA-binding domains, are generated by alternative splicing and involved in several functions. Their heterogeneity results from posttranscriptional and posttranslational modifications. Alternative splicing of exon 3, coding for a 13 aa N-terminal motif, generates for each protein a long and short isoforms. Subcellular fractionation and localization of recombinant proteins showed that this motif acts as a nucleolar localization signal. Deletion and substitution mutants identified four arginines, essential for nucleolar targeting, and three histidines to stabilize the proteins within the nucleolus. The short isoforms are never found in the nucleoli, whereas the long isoforms are present in the nucleoplasm and the nucleoli. For Ilf3, only the posttranslationally-unmodified long isoform is nucleolar, suggesting that this nucleolar targeting is abrogated by posttranslational modifications. Confocal microscopy and FRAP experiments have shown that the long Ilf3 isoform localizes to the granular component of the nucleolus, and that L-Ilf3 and L-NF90 exchange rapidly between nucleoli. The presence of this 13 aminoacid motif, combined with posttranslational modifications, is responsible for the differences in Ilf3 and NF90 isoforms subcellular localizations. The protein polymorphism of Ilf3/NF90 and the various subcellular localizations of their isoforms may partially explain the various functions previously reported for these proteins
Joint Evolutionary Trees: A Large-Scale Method To Predict Protein Interfaces Based on Sequence Sampling
The Joint Evolutionary Trees (JET) method detects protein interfaces, the core
residues involved in the folding process, and residues susceptible to
site-directed mutagenesis and relevant to molecular recognition. The approach,
based on the Evolutionary Trace (ET) method, introduces a novel way to treat
evolutionary information. Families of homologous sequences are analyzed through
a Gibbs-like sampling of distance trees to reduce effects of erroneous multiple
alignment and impacts of weakly homologous sequences on distance tree
construction. The sampling method makes sequence analysis more sensitive to
functional and structural importance of individual residues by avoiding effects
of the overrepresentation of highly homologous sequences and improves
computational efficiency. A carefully designed clustering method is parametrized
on the target structure to detect and extend patches on protein surfaces into
predicted interaction sites. Clustering takes into account residues'
physical-chemical properties as well as conservation. Large-scale application of
JET requires the system to be adjustable for different datasets and to guarantee
predictions even if the signal is low. Flexibility was achieved by a careful
treatment of the number of retrieved sequences, the amino acid distance between
sequences, and the selective thresholds for cluster identification. An iterative
version of JET (iJET) that guarantees finding the most likely interface residues
is proposed as the appropriate tool for large-scale predictions. Tests are
carried out on the Huang database of 62 heterodimer, homodimer, and transient
complexes and on 265 interfaces belonging to signal transduction proteins,
enzymes, inhibitors, antibodies, antigens, and others. A specific set of
proteins chosen for their special functional and structural properties
illustrate JET behavior on a large variety of interactions covering proteins,
ligands, DNA, and RNA. JET is compared at a large scale to ET and to Consurf,
Rate4Site, siteFiNDER|3D, and SCORECONS on specific structures. A significant
improvement in performance and computational efficiency is shown
Estimation of stature from the foot and its segments in a sub-adult female population of North India
<p>Abstract</p> <p>Background</p> <p>Establishing personal identity is one of the main concerns in forensic investigations. Estimation of stature forms a basic domain of the investigation process in unknown and co-mingled human remains in forensic anthropology case work. The objective of the present study was to set up standards for estimation of stature from the foot and its segments in a sub-adult female population.</p> <p>Methods</p> <p>The sample for the study constituted 149 young females from the Northern part of India. The participants were aged between 13 and 18 years. Besides stature, seven anthropometric measurements that included length of the foot from each toe (T1, T2, T3, T4, and T5 respectively), foot breadth at ball (BBAL) and foot breadth at heel (BHEL) were measured on both feet in each participant using standard methods and techniques.</p> <p>Results</p> <p>The results indicated that statistically significant differences (p < 0.05) between left and right feet occur in both the foot breadth measurements (BBAL and BHEL). Foot length measurements (T1 to T5 lengths) did not show any statistically significant bilateral asymmetry. The correlation between stature and all the foot measurements was found to be positive and statistically significant (<it>p-value </it>< 0.001). Linear regression models and multiple regression models were derived for estimation of stature from the measurements of the foot. The present study indicates that anthropometric measurements of foot and its segments are valuable in the estimation of stature. Foot length measurements estimate stature with greater accuracy when compared to foot breadth measurements.</p> <p>Conclusions</p> <p>The present study concluded that foot measurements have a strong relationship with stature in the sub-adult female population of North India. Hence, the stature of an individual can be successfully estimated from the foot and its segments using different regression models derived in the study. The regression models derived in the study may be applied successfully for the estimation of stature in sub-adult females, whenever foot remains are brought for forensic examination. Stepwise multiple regression models tend to estimate stature more accurately than linear regression models in female sub-adults.</p
Production of HIV Particles Is Regulated by Altering Sub-Cellular Localization and Dynamics of Rev Induced by Double-Strand RNA Binding Protein
Human immunodeficiency virus (HIV)-1 encoded Rev is essential for export from the nucleus to the cytoplasm, of unspliced and singly spliced transcripts coding for structural and nonstructural viral proteins. This process is spatially and temporally coordinated resulting from the interactions between cellular and viral proteins. Here we examined the effects of the sub-cellular localization and dynamics of Rev on the efficiency of nucleocytoplasmic transport of HIV-1 Gag transcripts and virus particle production. Using confocal microscopy and fluorescence recovery after bleaching (FRAP), we report that NF90ctv, a cellular protein involved in Rev function, alters both the sub-cellular localization and dynamics of Rev in vivo, which drastically affects the accumulation of the viral protein p24. The CRM1–dependent nuclear export of Gag mRNA linked to the Rev Response Element (RRE) is dependent on specific domains of the NF90ctv protein. Taken together, our results demonstrate that the appropriate intracellular localization and dynamics of Rev could regulate Gag assembly and HIV-1 replication
Assessment of ten trace elements in umbilical cord blood and maternal blood: association with birth weight
Vaccinia Virus G8R Protein: A Structural Ortholog of Proliferating Cell Nuclear Antigen (PCNA)
BACKGROUND: Eukaryotic DNA replication involves the synthesis of both a DNA leading and lagging strand, the latter requiring several additional proteins including flap endonuclease (FEN-1) and proliferating cell nuclear antigen (PCNA) in order to remove RNA primers used in the synthesis of Okazaki fragments. Poxviruses are complex viruses (dsDNA genomes) that infect eukaryotes, but surprisingly little is known about the process of DNA replication. Given our previous results that the vaccinia virus (VACV) G5R protein may be structurally similar to a FEN-1-like protein and a recent finding that poxviruses encode a primase function, we undertook a series of in silico analyses to identify whether VACV also encodes a PCNA-like protein. RESULTS: An InterProScan of all VACV proteins using the JIPS software package was used to identify any PCNA-like proteins. The VACV G8R protein was identified as the only vaccinia protein that contained a PCNA-like sliding clamp motif. The VACV G8R protein plays a role in poxvirus late transcription and is known to interact with several other poxvirus proteins including itself. The secondary and tertiary structure of the VACV G8R protein was predicted and compared to the secondary and tertiary structure of both human and yeast PCNA proteins, and a high degree of similarity between all three proteins was noted. CONCLUSIONS: The structure of the VACV G8R protein is predicted to closely resemble the eukaryotic PCNA protein; it possesses several other features including a conserved ubiquitylation and SUMOylation site that suggest that, like its counterpart in T4 bacteriophage (gp45), it may function as a sliding clamp ushering transcription factors to RNA polymerase during late transcription
Amyloidogenic Regions and Interaction Surfaces Overlap in Globular Proteins Related to Conformational Diseases
Protein aggregation underlies a wide range of human disorders. The polypeptides involved in these pathologies might be intrinsically unstructured or display a defined 3D-structure. Little is known about how globular proteins aggregate into toxic assemblies under physiological conditions, where they display an initially folded conformation. Protein aggregation is, however, always initiated by the establishment of anomalous protein-protein interactions. Therefore, in the present work, we have explored the extent to which protein interaction surfaces and aggregation-prone regions overlap in globular proteins associated with conformational diseases. Computational analysis of the native complexes formed by these proteins shows that aggregation-prone regions do frequently overlap with protein interfaces. The spatial coincidence of interaction sites and aggregating regions suggests that the formation of functional complexes and the aggregation of their individual subunits might compete in the cell. Accordingly, single mutations affecting complex interface or stability usually result in the formation of toxic aggregates. It is suggested that the stabilization of existing interfaces in multimeric proteins or the formation of new complexes in monomeric polypeptides might become effective strategies to prevent disease-linked aggregation of globular proteins
- …
