15 research outputs found

    Effective Field Theory for Highly Ionized Plasmas

    Full text link
    We examine the equilibrium properties of hot, dilute, non-relativistic plasmas. The partition function and density correlation functions of a classical plasma with several species are expressed in terms of a functional integral over electrostatic potential distributions. The leading order, field-theoretic tree approximation automatically includes the effects of Debye screening. Subleading, one-loop corrections are easily evaluated. The two-loop corrections, however, have ultraviolet divergences. These correspond to the short-distance, logarithmic divergence which is encountered in the spatial integral of the Boltzmann exponential when it is expanded to third order in the Coulomb potential. Such divergences do not appear in the underlying quantum theory --- they are rendered finite by quantum fluctuations. We show how such divergences may be removed and the correct finite theory obtained by introducing additional local interactions in the manner of modern effective quantum field theories. We obtain explicit results for density-density correlation functions through two-loop order and thermodynamic quantities through three-loop order. The induced couplings are shown to obey renormalization group equations, and these equations are used to characterize all leading logarithmic contributions in the theory. A linear combination of pressure and energy and number densities is shown to be described by a field-theoretic anomaly. The effective theory allows us to evaluate very easily the algebraic long-distance decay of density correlation functions.Comment: 194 pages, uses elsevier & epsf.sty; final corrections include

    Charged Scalar Field in an external magnetic Field: Renormalisation and Universal Diamagnetism

    Full text link
    The physical and mathematical mechanism behind diamagnetism of N (finite) spinless bosons (relativistic or non-relativistic) is well known. The mathematical signature of this diamagnetism follows from Kato's inequality while its physical way of understanding goes back to Van Leewen. One can guess that it might be true in the field theoretic case also. While the work on systems with a finite number of degrees of freedom suggests that the same result is true in a field theory, it does not by any means prove it. In the field theoretic context one has to develop a suitable regularisation scheme to renormalise the free energy. We show that charged scalar fields in (2+1) and (3+1) dimensions are always diamagnetic, even in the presence of interactions and at finite temperatures. This generalises earlier work on the diamagnetism of charged spinless bosons to the case of infinite degrees of freedom. We also discuss possible applications of the theory.Comment: uuencoded file, 14 pages, longer version of cond-mat/9502103, to appear in Nuclear Physics B, vol.473 (1996), 1 postcript figure include

    Loop algorithms for quantum simulations of fermion models on lattices

    Full text link
    Two cluster algorithms, based on constructing and flipping loops, are presented for worldline quantum Monte Carlo simulations of fermions and are tested on the one-dimensional repulsive Hubbard model. We call these algorithms the loop-flip and loop-exchange algorithms. For these two algorithms and the standard worldline algorithm, we calculated the autocorrelation times for various physical quantities and found that the ordinary worldline algorithm, which uses only local moves, suffers from very long correlation times that makes not only the estimate of the error difficult but also the estimate of the average values themselves difficult. These difficulties are especially severe in the low-temperature, large-UU regime. In contrast, we find that new algorithms, when used alone or in combinations with themselves and the standard algorithm, can have significantly smaller autocorrelation times, in some cases being smaller by three orders of magnitude. The new algorithms, which use non-local moves, are discussed from the point of view of a general prescription for developing cluster algorithms. The loop-flip algorithm is also shown to be ergodic and to belong to the grand canonical ensemble. Extensions to other models and higher dimensions is briefly discussed.Comment: 36 pages, RevTex ver.

    Nuclear equation of state at high density and the properties of neutron stars

    Get PDF
    We discuss the relativistic nuclear equation of state (EOS) using a relativistic transport model in heavy-ion collisions. From the baryon flow for Au+AuAu + Au systems at SIS to AGS energies and above we find that the strength of the vector potential has to be reduced moderately at high density or at high relative momenta to describe the flow data at 1-10 A GeV. We use the same dynamical model to calculate the nuclear EOS and then employ this to calculate the gross structure of the neutron star considering the core to be composed of neutrons with an admixture of protons, electrons, muons, sigmas and lambdas at zero temperature. We then discuss these gross properties of neutron stars such as maximum mass and radius in contrast to the observational values.Comment: 17 pages, 5 figures, to be published in Phy. Rev.

    Quark Hadron Phase Transition and Hybrid Stars

    Get PDF
    We investigate the properties of hybrid stars consisting of quark matter in the core and hadron matter in outer region. The hadronic and quark matter equations of state are calculated by using nonlinear Walecka model and chiral colour dielectric (CCD) model respectively. We find that the phase transition from hadron to quark matter is possible in a narrow range of the parameters of nonlinear Walecka and CCD models. The transition is strong or weak first order depending on the parameters used. The EOS thus obtained, is used to study the properties of hybrid stars. We find that the calculated hybrid star properties are similar to those of pure neutron stars.Comment: 25 pages in LaTex and 9 figures available on request, IP/BBSR/94-3

    Complications of Venous Endovascular Lysis and Stenting (Iliac, Subclavian)

    No full text

    Dielectric behavior of syntactic foams at low temperatures and frequencies

    No full text
    Syntactic foam is a lightweight composite consisting of hollow particles embedded in a polymer resin matrix. In this paper, results are presented of dielectric spectroscopy measurements on test specimens of syntactic foam with glass micro-spheres partially filled with SO2 . This type of syntactic foam is intended to be used as a high performance insulating material for lightweight high-voltage DC applications. The dielectric spectroscopy results showed an anomalous non-Debye behavior in a temperature range from roughly -140degC to +40degC. With increasing temperature the losses decrease at first, until they suddenly increase again at about +40degC. It has to be noted that the overall losses were quite high, compared to the base material. It appears that either the increased dc conductivity, the interfacial polarization at the interfaces between glass and epoxy, or both are the reason for these overall high losses. It is pointed out that the anomalous relaxation peak shifts to lower temperatures when the frequency is increased, contrary to normal behavior. In addition, a merge of two relaxation peaks is visible for higher frequencies at around 70degC, tentatively explained as being caused by the phase transition of SO2

    Permittivity in Epoxy based Syntactic Foam Nanocomposites

    No full text
    corecore