2,377 research outputs found
Extensions and block decompositions for finite-dimensional representations of equivariant map algebras
Suppose a finite group acts on a scheme and a finite-dimensional Lie
algebra . The associated equivariant map algebra is the Lie
algebra of equivariant regular maps from to . The irreducible
finite-dimensional representations of these algebras were classified in
previous work with P. Senesi, where it was shown that they are all tensor
products of evaluation representations and one-dimensional representations. In
the current paper, we describe the extensions between irreducible
finite-dimensional representations of an equivariant map algebra in the case
that is an affine scheme of finite type and is reductive.
This allows us to also describe explicitly the blocks of the category of
finite-dimensional representations in terms of spectral characters, whose
definition we extend to this general setting. Applying our results to the case
of generalized current algebras (the case where the group acting is trivial),
we recover known results but with very different proofs. For (twisted) loop
algebras, we recover known results on block decompositions (again with very
different proofs) and new explicit formulas for extensions. Finally,
specializing our results to the case of (twisted) multiloop algebras and
generalized Onsager algebras yields previously unknown results on both
extensions and block decompositions.Comment: 41 pages; v2: minor corrections, formatting changed to match
published versio
Ozone Depletion from Nearby Supernovae
Estimates made in the 1970's indicated that a supernova occurring within tens
of parsecs of Earth could have significant effects on the ozone layer. Since
that time, improved tools for detailed modeling of atmospheric chemistry have
been developed to calculate ozone depletion, and advances have been made in
theoretical modeling of supernovae and of the resultant gamma-ray spectra. In
addition, one now has better knowledge of the occurrence rate of supernovae in
the galaxy, and of the spatial distribution of progenitors to core-collapse
supernovae. We report here the results of two-dimensional atmospheric model
calculations that take as input the spectral energy distribution of a
supernova, adopting various distances from Earth and various latitude impact
angles. In separate simulations we calculate the ozone depletion due to both
gamma-rays and cosmic rays. We find that for the combined ozone depletion
roughly to double the ``biologically active'' UV flux received at the surface
of the Earth, the supernova must occur at <8 pc. Based on the latest data, the
time-averaged galactic rate of core-collapse supernovae occurring within 8 pc
is ~1.5/Gyr. In comparing our calculated ozone depletions with those of
previous studies, we find them to be significantly less severe than found by
Ruderman (1974), and consistent with Whitten et al. (1976). In summary, given
the amplitude of the effect, the rate of nearby supernovae, and the ~Gyr time
scale for multicellular organisms on Earth, this particular pathway for mass
extinctions may be less important than previously thought.Comment: 24 pages, 4 Postscript figures, to appear in The Astrophysical
Journal, 2003 March 10, vol. 58
Development of Readout Interconnections for the Si-W Calorimeter of SiD
The SiD collaboration is developing a Si-W sampling electromagnetic
calorimeter, with anticipated application for the International Linear
Collider. Assembling the modules for such a detector will involve special
bonding technologies for the interconnections, especially for attaching a
silicon detector wafer to a flex cable readout bus. We review the interconnect
technologies involved, including oxidation removal processes, pad surface
preparation, solder ball selection and placement, and bond quality assurance.
Our results show that solder ball bonding is a promising technique for the Si-W
ECAL, and unresolved issues are being addressed.Comment: 8 pages + title, 6 figure
On the action potential as a propagating density pulse and the role of anesthetics
The Hodgkin-Huxley model of nerve pulse propagation relies on ion currents
through specific resistors called ion channels. We discuss a number of
classical thermodynamic findings on nerves that are not contained in this
classical theory. Particularly striking is the finding of reversible heat
changes, thickness and phase changes of the membrane during the action
potential. Data on various nerves rather suggest that a reversible density
pulse accompanies the action potential of nerves. Here, we attempted to explain
these phenomena by propagating solitons that depend on the presence of
cooperative phase transitions in the nerve membrane. These transitions are,
however, strongly influenced by the presence of anesthetics. Therefore, the
thermodynamic theory of nerve pulses suggests a explanation for the famous
Meyer-Overton rule that states that the critical anesthetic dose is linearly
related to the solubility of the drug in the membranes.Comment: 13 pages, 8 figure
Poisson transition rates from time-domain measurements with finite bandwidth
In time-domain measurements of a Poisson two-level system, the observed
transition rates are always smaller than those of the actual system, a general
consequence of finite measurement bandwidth in an experiment. This
underestimation of the rates is significant even when the measurement and
detection apparatus is ten times faster than the process under study. We derive
here a quantitative form for this correction using a straightforward
state-transition model that includes the detection apparatus, and provide a
method for determining a system's actual transition rates from
bandwidth-limited measurements. We support our results with computer
simulations and experimental data from time-domain measurements of
quasiparticle tunneling in a single-Cooper-pair transistor.Comment: 4 pages, 5 figure
A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse
Correctly validating results from single molecule data: the case of stretched exponential decay in the catalytic activity of single lipase B molecules
The question of how to validate and interpret correctly the waiting time
probability density functions (WT-PDFs) from single molecule data is addressed.
It is shown by simulation that when a stretched exponential WT-PDF, with a
stretched exponent alfa and a time scale parameter tau, generates the off
periods of a two-state trajectory, a reliable recovery of the input WT-PDF from
the trajectory is obtained even when the bin size used to define the
trajectory, dt, is much larger than the parameter tau. This holds true as long
as the first moment of the WT-PDF is much larger than dt. Our results validate
the results in an earlier study of the activity of single Lipase B molecules
and disprove recent related critique
Correlation studies of open and closed states fluctuations in an ion channel: Analysis of ion current through a large conductance locust potassium channel
Ion current fluctuations occurring within open and closed states of large
conductance locust potassium channel (BK channel) were investigated for the
existence of correlation. Both time series, extracted from the ion current
signal, were studied by the autocorrelation function (AFA) and the detrended
fluctuation analysis (DFA) methods. The persistent character of the short- and
middle-range correlations of time series is shown by the slow decay of the
autocorrelation function. The DFA exponent is significantly larger
than 0.5. The existence of strongly-persistent long-range correlations was
detected only for closed-states fluctuations, with . The
long-range correlation of the BK channel action is therefore determined by the
character of closed states. The main outcome of this study is that the memory
effect is present not only between successive conducting states of the channel
but also independently within the open and closed states themselves. As the ion
current fluctuations give information about the dynamics of the channel
protein, our results point to the correlated character of the protein movement
regardless whether the channel is in its open or closed state.Comment: 12 pages, 5 figures; to be published in Phys. Rev.
- …
