1,171 research outputs found
A statistical view on exchanges in Quickselect
In this paper we study the number of key exchanges required by Hoare's FIND
algorithm (also called Quickselect) when operating on a uniformly distributed
random permutation and selecting an independent uniformly distributed rank.
After normalization we give a limit theorem where the limit law is a perpetuity
characterized by a recursive distributional equation. To make the limit theorem
usable for statistical methods and statistical experiments we provide an
explicit rate of convergence in the Kolmogorov--Smirnov metric, a numerical
table of the limit law's distribution function and an algorithm for exact
simulation from the limit distribution. We also investigate the limit law's
density. This case study provides a program applicable to other cost measures,
alternative models for the rank selected and more balanced choices of the pivot
element such as median-of- versions of Quickselect as well as further
variations of the algorithm.Comment: Theorem 4.4 revised; accepted for publication in Analytic
Algorithmics and Combinatorics (ANALCO14
Probabilistic Analysis for Randomized Game Tree Evaluation
We give a probabilistic analysis for the randomized game tree evaluation
algorithm of Snir. We first show that there exists an input such that the
running time, measured as the number of external nodes read by the algorithm,
on that input is maximal in stochastic order among all possible inputs. For
this worst case input we identify the exact expectation of the number of
external nodes read by the algorithm, give the asymptotic order of the variance
including the leading constant, provide a limit law for an appropriate
normalization as well as a tail bound estimating large deviations. Our tail
bound improves upon the exponent of an earlier bound due to Karp and Zhang,
where subgaussian tails were shown based on an approach using multitype
branching processes and Azuma's inequality. Our approach rests on a direct,
inductive estimate of the moment generating function.Comment: 10 pages, conference: Third Colloquium on Mathematics and Computer
Scienc
On a functional contraction method
Methods for proving functional limit laws are developed for sequences of
stochastic processes which allow a recursive distributional decomposition
either in time or space. Our approach is an extension of the so-called
contraction method to the space of continuous functions
endowed with uniform topology and the space of
c\`{a}dl\`{a}g functions with the Skorokhod topology. The contraction method
originated from the probabilistic analysis of algorithms and random trees where
characteristics satisfy natural distributional recurrences. It is based on
stochastic fixed-point equations, where probability metrics can be used to
obtain contraction properties and allow the application of Banach's fixed-point
theorem. We develop the use of the Zolotarev metrics on the spaces
and in this context. Applications are
given, in particular, a short proof of Donsker's functional limit theorem is
derived and recurrences arising in the probabilistic analysis of algorithms are
discussed.Comment: Published at http://dx.doi.org/10.1214/14-AOP919 in the Annals of
Probability (http://www.imstat.org/aop/) by the Institute of Mathematical
Statistics (http://www.imstat.org
A limit process for partial match queries in random quadtrees and -d trees
We consider the problem of recovering items matching a partially specified
pattern in multidimensional trees (quadtrees and -d trees). We assume the
traditional model where the data consist of independent and uniform points in
the unit square. For this model, in a structure on points, it is known that
the number of nodes to visit in order to report the items matching
a random query , independent and uniformly distributed on ,
satisfies , where and
are explicit constants. We develop an approach based on the analysis of
the cost of any fixed query , and give precise estimates
for the variance and limit distribution of the cost . Our results
permit us to describe a limit process for the costs as varies in
; one of the consequences is that ; this settles a question of
Devroye [Pers. Comm., 2000].Comment: Published in at http://dx.doi.org/10.1214/12-AAP912 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org). arXiv admin note: text
overlap with arXiv:1107.223
- …
