1,171 research outputs found

    A statistical view on exchanges in Quickselect

    Full text link
    In this paper we study the number of key exchanges required by Hoare's FIND algorithm (also called Quickselect) when operating on a uniformly distributed random permutation and selecting an independent uniformly distributed rank. After normalization we give a limit theorem where the limit law is a perpetuity characterized by a recursive distributional equation. To make the limit theorem usable for statistical methods and statistical experiments we provide an explicit rate of convergence in the Kolmogorov--Smirnov metric, a numerical table of the limit law's distribution function and an algorithm for exact simulation from the limit distribution. We also investigate the limit law's density. This case study provides a program applicable to other cost measures, alternative models for the rank selected and more balanced choices of the pivot element such as median-of-2t+12t+1 versions of Quickselect as well as further variations of the algorithm.Comment: Theorem 4.4 revised; accepted for publication in Analytic Algorithmics and Combinatorics (ANALCO14

    Probabilistic Analysis for Randomized Game Tree Evaluation

    Full text link
    We give a probabilistic analysis for the randomized game tree evaluation algorithm of Snir. We first show that there exists an input such that the running time, measured as the number of external nodes read by the algorithm, on that input is maximal in stochastic order among all possible inputs. For this worst case input we identify the exact expectation of the number of external nodes read by the algorithm, give the asymptotic order of the variance including the leading constant, provide a limit law for an appropriate normalization as well as a tail bound estimating large deviations. Our tail bound improves upon the exponent of an earlier bound due to Karp and Zhang, where subgaussian tails were shown based on an approach using multitype branching processes and Azuma's inequality. Our approach rests on a direct, inductive estimate of the moment generating function.Comment: 10 pages, conference: Third Colloquium on Mathematics and Computer Scienc

    On a functional contraction method

    Get PDF
    Methods for proving functional limit laws are developed for sequences of stochastic processes which allow a recursive distributional decomposition either in time or space. Our approach is an extension of the so-called contraction method to the space C[0,1]\mathcal{C}[0,1] of continuous functions endowed with uniform topology and the space D[0,1]\mathcal {D}[0,1] of c\`{a}dl\`{a}g functions with the Skorokhod topology. The contraction method originated from the probabilistic analysis of algorithms and random trees where characteristics satisfy natural distributional recurrences. It is based on stochastic fixed-point equations, where probability metrics can be used to obtain contraction properties and allow the application of Banach's fixed-point theorem. We develop the use of the Zolotarev metrics on the spaces C[0,1]\mathcal{C}[0,1] and D[0,1]\mathcal{D}[0,1] in this context. Applications are given, in particular, a short proof of Donsker's functional limit theorem is derived and recurrences arising in the probabilistic analysis of algorithms are discussed.Comment: Published at http://dx.doi.org/10.1214/14-AOP919 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A limit process for partial match queries in random quadtrees and 22-d trees

    Full text link
    We consider the problem of recovering items matching a partially specified pattern in multidimensional trees (quadtrees and kk-d trees). We assume the traditional model where the data consist of independent and uniform points in the unit square. For this model, in a structure on nn points, it is known that the number of nodes Cn(ξ)C_n(\xi ) to visit in order to report the items matching a random query ξ\xi, independent and uniformly distributed on [0,1][0,1], satisfies E[Cn(ξ)]κnβ\mathbf {E}[{C_n(\xi )}]\sim\kappa n^{\beta}, where κ\kappa and β\beta are explicit constants. We develop an approach based on the analysis of the cost Cn(s)C_n(s) of any fixed query s[0,1]s\in[0,1], and give precise estimates for the variance and limit distribution of the cost Cn(x)C_n(x). Our results permit us to describe a limit process for the costs Cn(x)C_n(x) as xx varies in [0,1][0,1]; one of the consequences is that E[maxx[0,1]Cn(x)]γnβ\mathbf {E}[{\max_{x\in[0,1]}C_n(x)}]\sim \gamma n^{\beta}; this settles a question of Devroye [Pers. Comm., 2000].Comment: Published in at http://dx.doi.org/10.1214/12-AAP912 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org). arXiv admin note: text overlap with arXiv:1107.223
    corecore