3,565 research outputs found
Quantum macrostatistical picture of nonequilibrium steady states
We employ a quantum macrostatistical treatment of irreversible processes to
prove that, in nonequilibrium steady states, (a) the hydrodynamical observables
execute a generalised Onsager-Machlup process and (b) the spatial correlations
of these observables are generically of long range. The key assumptions behind
these results are a nonequilibrium version of Onsager's regression hypothesis,
together with certain hypotheses of chaoticity and local equilibrium for
hydrodynamical fluctuations.Comment: TeX, 13 page
Hyperpolarized Long-T1 Silicon Nanoparticles for Magnetic Resonance Imaging
Silicon nanoparticles are experimentally investigated as a potential
hyperpolarized, targetable MRI imaging agent. Nuclear T_1 times at room
temperature for a variety of Si nanoparticles are found to be remarkably long
(10^2 to 10^4 s) - roughly consistent with predictions of a core-shell
diffusion model - allowing them to be transported, administered and imaged on
practical time scales without significant loss of polarization. We also report
surface functionalization of Si nanoparticles, comparable to approaches used in
other biologically targeted nanoparticle systems.Comment: supporting material here:
http://marcuslab.harvard.edu/Aptekar_hyper1_sup.pd
Collective and single cell behavior in epithelial contact inhibition
Control of cell proliferation is a fundamental aspect of tissue physiology
central to morphogenesis, wound healing and cancer. Although many of the
molecular genetic factors are now known, the system level regulation of growth
is still poorly understood. A simple form of inhibition of cell proliferation
is encountered in vitro in normally differentiating epithelial cell cultures
and is known as "contact inhibition". The study presented here provides a
quantitative characterization of contact inhibition dynamics on tissue-wide and
single cell levels. Using long-term tracking of cultured MDCK cells we
demonstrate that inhibition of cell division in a confluent monolayer follows
inhibition of cell motility and sets in when mechanical constraint on local
expansion causes divisions to reduce cell area. We quantify cell motility and
cell cycle statistics in the low density confluent regime and their change
across the transition to epithelial morphology which occurs with increasing
cell density. We then study the dynamics of cell area distribution arising
through reductive division, determine the average mitotic rate as a function of
cell size and demonstrate that complete arrest of mitosis occurs when cell area
falls below a critical value. We also present a simple computational model of
growth mechanics which captures all aspects of the observed behavior. Our
measurements and analysis show that contact inhibition is a consequence of
mechanical interaction and constraint rather than interfacial contact alone,
and define quantitative phenotypes that can guide future studies of molecular
mechanisms underlying contact inhibition
Nature of the Low Field Transition in the Mixed State of High Temperature Superconductors
We have numerically studied the statics and dynamics of a model
three-dimensional vortex lattice at low magnetic fields. For the statics we use
a frustrated 3D XY model on a stacked triangular lattice. We model the dynamics
as a coupled network of overdamped resistively-shunted Josephson junctions with
Langevin noise. At low fields, there is a weakly first-order phase transition,
at which the vortex lattice melts into a line liquid. Phase coherence parallel
to the field persists until a sharp crossover, conceivably a phase transition,
near which develops at the same temperature as an infinite
vortex tangle. The calculated flux flow resistivity in various geometries near
closely resembles experiment. The local density of field induced
vortices increases sharply near , corresponding to the experimentally
observed magnetization jump. We discuss the nature of a possible transition or
crossover at (B) which is distinct from flux lattice melting.Comment: Updated references. 46 pages including low quality 25 eps figures.
Contact [email protected] or visit
http://www.physics.ohio-state.edu:80/~ryu/ for better figures and additional
movie files from simulations. To be published in Physical Review B1 01Jun9
Appointing Women to Boards: Is There a Cultural Bias?
Companies that are serious about corporate governance and business ethics are turning their attention to gender diversity at the most senior levels of business (Institute of Business Ethics, Business Ethics Briefing 21:1, 2011). Board gender diversity has been the subject of several studies carried out by international organizations such as Catalyst (Increasing gender diversity on boards: Current index of formal approaches, 2012), the World Economic Forum (Hausmann et al., The global gender gap report, 2010), and the European Board Diversity Analysis (Is it getting easier to find women on European boards? 2010). They all lead to reports confirming the overall relatively low proportion of women on boards and the slow pace at which more women are being appointed. Furthermore, the proportion of women on corporate boards varies much across countries. Based on institutional theory, this study hypothesizes and tests whether this variation can be attributed to differences in cultural settings across countries. Our analysis of the representation of women on boards for 32 countries during 2010 reveals that two cultural characteristics are indeed associated with the observed differences. We use the cultural dimensions proposed by Hofstede (Culture’s consequences: International differences in work-related values, 1980) to measure this construct. Results show that countries which have the greatest tolerance for inequalities in the distribution of power and those that tend to value the role of men generally exhibit lower representations of women on boards
Chiral and herringbone symmetry breaking in water-surface monolayers
We report the observation from monolayers of eicosanoic acid in the L′2 phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of their nearest neighbors. In this region we find a structural transition, which we tentatively identify as the rotator-herringbone transition L2d−L2h
Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations
We reconsider the conceptual foundations of the renormalization-group (RG)
formalism, and prove some rigorous theorems on the regularity properties and
possible pathologies of the RG map. Regarding regularity, we show that the RG
map, defined on a suitable space of interactions (= formal Hamiltonians), is
always single-valued and Lipschitz continuous on its domain of definition. This
rules out a recently proposed scenario for the RG description of first-order
phase transitions. On the pathological side, we make rigorous some arguments of
Griffiths, Pearce and Israel, and prove in several cases that the renormalized
measure is not a Gibbs measure for any reasonable interaction. This means that
the RG map is ill-defined, and that the conventional RG description of
first-order phase transitions is not universally valid. For decimation or
Kadanoff transformations applied to the Ising model in dimension ,
these pathologies occur in a full neighborhood of the low-temperature part of the first-order
phase-transition surface. For block-averaging transformations applied to the
Ising model in dimension , the pathologies occur at low temperatures
for arbitrary magnetic-field strength. Pathologies may also occur in the
critical region for Ising models in dimension . We discuss in detail
the distinction between Gibbsian and non-Gibbsian measures, and give a rather
complete catalogue of the known examples. Finally, we discuss the heuristic and
numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also
ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search
method is used, "stacking'' the GW data around the times of individual
soft-gamma bursts in the storm to enhance sensitivity for models in which
multiple bursts are accompanied by GW emission. We assume that variation in the
time difference between burst electromagnetic emission and potential burst GW
emission is small relative to the GW signal duration, and we time-align GW
excess power time-frequency tilings containing individual burst triggers to
their corresponding electromagnetic emissions. We use two GW emission models in
our search: a fluence-weighted model and a flat (unweighted) model for the most
electromagnetically energetic bursts. We find no evidence of GWs associated
with either model. Model-dependent GW strain, isotropic GW emission energy
E_GW, and \gamma = E_GW / E_EM upper limits are estimated using a variety of
assumed waveforms. The stacking method allows us to set the most stringent
model-dependent limits on transient GW strain published to date. We find E_GW
upper limit estimates (at a nominal distance of 10 kpc) of between 2x10^45 erg
and 6x10^50 erg depending on waveform type. These limits are an order of
magnitude lower than upper limits published previously for this storm and
overlap with the range of electromagnetic energies emitted in SGR giant flares.Comment: 7 pages, 3 figure
UBVRI Light Curves of 44 Type Ia Supernovae
We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from
1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence
Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The
data set comprises 2190 observations and is the largest homogeneously observed
and reduced sample of SN Ia to date, nearly doubling the number of
well-observed, nearby SN Ia with published multicolor CCD light curves. The
large sample of U-band photometry is a unique addition, with important
connections to SN Ia observed at high redshift. The decline rate of SN Ia
U-band light curves correlates well with the decline rate in other bands, as
does the U-B color at maximum light. However, the U-band peak magnitudes show
an increased dispersion relative to other bands even after accounting for
extinction and decline rate, amounting to an additional ~40% intrinsic scatter
compared to B-band.Comment: 84 authors, 71 pages, 51 tables, 10 figures. Accepted for publication
in the Astronomical Journal. Version with high-res figures and electronic
data at http://astron.berkeley.edu/~saurabh/cfa2snIa
A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
- …
