5,056 research outputs found
Copper signaling axis as a target for prostate cancer therapeutics.
Previously published reports indicate that serum copper levels are elevated in patients with prostate cancer and that increased copper uptake can be used as a means to image prostate tumors. It is unclear, however, to what extent copper is required for prostate cancer cell function as we observed only modest effects of chelation strategies on the growth of these cells in vitro. With the goal of exploiting prostate cancer cell proclivity for copper uptake, we developed a "conditional lethal" screen to identify compounds whose cytotoxic actions were manifested in a copper-dependent manner. Emerging from this screen was a series of dithiocarbamates, which, when complexed with copper, induced reactive oxygen species-dependent apoptosis of malignant, but not normal, prostate cells. One of the dithiocarbamates identified, disulfiram (DSF), is an FDA-approved drug that has previously yielded disappointing results in clinical trials in patients with recurrent prostate cancer. Similarly, in our studies, DSF alone had a minimal effect on the growth of prostate cancer tumors when propagated as xenografts. However, when DSF was coadministered with copper, a very dramatic inhibition of tumor growth in models of hormone-sensitive and of castrate-resistant disease was observed. Furthermore, we determined that prostate cancer cells express high levels of CTR1, the primary copper transporter, and additional chaperones that are required to maintain intracellular copper homeostasis. The expression levels of most of these proteins are increased further upon treatment of androgen receptor (AR)-positive prostate cancer cell lines with androgens. Not surprisingly, robust CTR1-dependent uptake of copper into prostate cancer cells was observed, an activity that was accentuated by activation of AR. Given these data linking AR to intracellular copper uptake, we believe that dithiocarbamate/copper complexes are likely to be effective for the treatment of patients with prostate cancer whose disease is resistant to classical androgen ablation therapies
A Catalog of Reference Genomes from the Human Microbiome
The human microbiome refers to the community of microorganisms including prokaryotes, viruses
and microbial eukaryotes that populate the human body. The National Institutes of Health launched
an initiative that focuses describing the diversity of microbial species associated with health and
disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference
genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results
from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted
polypeptides that correspond to the gene complement of these strains “novel” polypeptides that had
both unmasked sequence length > 100 amino acids and no BLASTP match to any non-reference
entry in the nr subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which
29,987 (~97%) were unique. In addition, this set of microbial genomes allows for ~ 40% of random
sequences from the microbiome of the gastrointestinal tract to be associated with organisms based
on the match criteria used. Insights into pan-genome analysis suggest that we are still far from
saturating microbial species genetic datasets. In addition, the associated metrics and standards used
by the group for quality assurance are presented
Translation and Community in the work of Elizabeth Cary
Explores the role of female community within Elizabeth Cary\u27s translations and her play, The Tragedy of Mariam
Renal impairment in a rural African antiretroviral programme
Background:
There is little knowledge regarding the prevalence and nature of renal impairment in African populations initiating antiretroviral treatment, nor evidence to inform the most cost effective methods of screening for renal impairment. With the increasing availability of the potentially nephrotixic drug, tenofovir, such information is important for the planning of antiretroviral programmes
Methods:
(i) Retrospective review of the prevalence and risk factors for impaired renal function in 2189 individuals initiating antiretroviral treatment in a rural African setting between 2004 and 2007 (ii) A prospective study of 149 consecutive patients initiating antiretrovirals to assess the utility of urine analysis for the detection of impaired renal function. Severe renal and moderately impaired renal function were defined as an estimated GFR of ≤ 30 mls/min/1.73 m2 and 30–60 mls/min/1.73 m2 respectively. Logistic regression was used to determine odds ratio (OR) of significantly impaired renal function (combining severe and moderate impairment). Co-variates for analysis were age, sex and CD4 count at initiation.
Results:
(i) There was a low prevalence of severe renal impairment (29/2189, 1.3% 95% C.I. 0.8–1.8) whereas moderate renal impairment was more frequent (287/2189, 13.1% 95% C.I. 11.6–14.5) with many patients having advanced immunosuppression at treatment initiation (median CD4 120 cells/μl). In multivariable logistic regression age over 40 (aOR 4.65, 95% C.I. 3.54–6.1), male gender (aOR 1.89, 95% C.I. 1.39–2.56) and CD4<100 cells/ul (aOR 1.4, 95% C.I. 1.07–1.82) were associated with risk of significant renal impairment (ii) In 149 consecutive patients, urine analysis had poor sensitivity and specificity for detecting impaired renal function.
Conclusion:
In this rural African setting, significant renal impairment is uncommon in patients initiating antiretrovirals. Urine analysis alone may be inadequate for identification of those with impaired renal function where resources for biochemistry are limited
Uncovering the hidden costs of offshoring: The interplay of complexity, organizational design, and experience
This study investigates estimation errors due to hidden costs—the costs of implementation that are neglected in strategic decision-making processes—in the context of services offshoring. Based on data from the Offshoring Research Network, we find that decision makers are more likely to make cost-estimation errors given increasing configuration and task complexity in captive offshoring and offshore outsourcing, respectively. Moreover, we show that experience and a strong orientation toward organizational design in the offshoring strategy reduce the cost-estimation errors that follow from complexity. Our findings contribute to research on the effectiveness of sourcing and global strategies by stressing the importance of organizational design and experience in dealing with increasing complexity
Factors associated with failed treatment : an analysis of 121,744 women embarking on their first IVF cycles
Peer reviewedPublisher PD
Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms
Continuous-time Markov chains with alarms (ACTMCs) allow for alarm events
that can be non-exponentially distributed. Within parametric ACTMCs, the
parameters of alarm-event distributions are not given explicitly and can be
subject of parameter synthesis. An algorithm solving the -optimal
parameter synthesis problem for parametric ACTMCs with long-run average
optimization objectives is presented. Our approach is based on reduction of the
problem to finding long-run average optimal strategies in semi-Markov decision
processes (semi-MDPs) and sufficient discretization of parameter (i.e., action)
space. Since the set of actions in the discretized semi-MDP can be very large,
a straightforward approach based on explicit action-space construction fails to
solve even simple instances of the problem. The presented algorithm uses an
enhanced policy iteration on symbolic representations of the action space. The
soundness of the algorithm is established for parametric ACTMCs with
alarm-event distributions satisfying four mild assumptions that are shown to
hold for uniform, Dirac and Weibull distributions in particular, but are
satisfied for many other distributions as well. An experimental implementation
shows that the symbolic technique substantially improves the efficiency of the
synthesis algorithm and allows to solve instances of realistic size.Comment: This article is a full version of a paper accepted to the Conference
on Quantitative Evaluation of SysTems (QEST) 201
The Expression and Localization of N-Myc Downstream-Regulated Gene 1 in Human Trophoblasts
The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1's subcellular distribution. © 2013 Shi et al
Branch Mode Selection during Early Lung Development
Many organs of higher organisms, such as the vascular system, lung, kidney,
pancreas, liver and glands, are heavily branched structures. The branching
process during lung development has been studied in great detail and is
remarkably stereotyped. The branched tree is generated by the sequential,
non-random use of three geometrically simple modes of branching (domain
branching, planar and orthogonal bifurcation). While many regulatory components
and local interactions have been defined an integrated understanding of the
regulatory network that controls the branching process is lacking. We have
developed a deterministic, spatio-temporal differential-equation based model of
the core signaling network that governs lung branching morphogenesis. The model
focuses on the two key signaling factors that have been identified in
experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well
as the SHH receptor patched (Ptc). We show that the reported biochemical
interactions give rise to a Schnakenberg-type Turing patterning mechanisms that
allows us to reproduce experimental observations in wildtype and mutant mice.
The kinetic parameters as well as the domain shape are based on experimental
data where available. The developed model is robust to small absolute and large
relative changes in the parameter values. At the same time there is a strong
regulatory potential in that the switching between branching modes can be
achieved by targeted changes in the parameter values. We note that the sequence
of different branching events may also be the result of different growth
speeds: fast growth triggers lateral branching while slow growth favours
bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is
sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio
- …
